Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Promoters are essential DNA sequences that initiate transcription and regulate gene expression. Precisely identifying promoter sites is crucial for deciphering gene expression patterns and the roles of gene regulatory networks. Recent advancements in bioinformatics have leveraged deep learning and natural language processing (NLP) to enhance promoter prediction accuracy. Techniques such as convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and BERT models have been particularly impactful. However, current approaches often rely on arbitrary DNA sequence segmentation during BERT pre-training, which may not yield optimal results. To overcome this limitation, this article introduces a novel DNA sequence segmentation method. This approach develops a more refined dictionary for DNA sequences, utilizes it for BERT pre-training, and employs an Inception neural network as the foundational model. This BERT-Inception architecture captures information across multiple granularities. Experimental results show that the model improves the performance of several downstream tasks and introduces deep learning interpretability, providing new perspectives for interpreting and understanding DNA sequence information. The detailed source code is available at https://github.com/katouMegumiH/Promoter_BERT .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697570 | PMC |
http://dx.doi.org/10.1038/s41598-024-84105-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!