High-entropy alloy nanoparticles (HEA-NPs) exhibit favorable properties in catalytic processes, as their multi-metallic sites ensure both high intrinsic activity and atomic efficiency. However, controlled synthesis of uniform multi-metallic ensembles at the atomic level remains challenging. This study successfully loads HEA-NPs onto a nitrogen-doped carbon carrier (HEAs) and pioneers the application in peroxymonosulfate (PMS) activation to drive Fenton-like oxidation. The HEAs-PMS system achieves ultrafast pollutant removal across a wide pH range with strong resistance to real-world water interferences. Furthermore, the nonradical HEAs-PMS system selectively transforms phenolics into high-molecular-weight products via a polymerization pathway. The unique non-mineralization regime remarkably reduces PMS consumption and achieves a high electron utilization efficiency of up to 213.4%. Further DFT calculations and experimental analysis reveal that Fe and Co in HEA-NPs act as the primary catalytic sites to complex with PMS for activation, while Ni, Cu, and Pd serve as charge mediators to facilitate electron transfer. The resulting PMS* complexes on HEAs possess a high redox potential, which drives spatially separated phenol oxidation on nitrogen-doped graphene support to form phenoxyl radicals, subsequently triggering the formation of high-molecule polymeric products via polymerization reactions. This study offers engineered HEAs catalysts for water treatment with low oxidant consumption and emissions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697309PMC
http://dx.doi.org/10.1038/s41467-024-55627-7DOI Listing

Publication Analysis

Top Keywords

electron utilization
8
utilization efficiency
8
pms activation
8
heas-pms system
8
products polymerization
8
high-entropy alloys
4
alloys catalyzing
4
catalyzing polymeric
4
polymeric transformation
4
transformation water
4

Similar Publications

The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.

View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear.

View Article and Find Full Text PDF

Despite recent advancements in organic photovoltaics (OPVs), further improvements in power conversion efficiency (PCE) and device lifetime are necessary for commercial viability. Strategies such as optimizing the molecular orientation and minimizing the charge traps of organic films are particularly effective in enhancing photovoltaic performance. In this study, we successfully utilized vacuum electrospray deposition (VESD) to achieve favourable face-on stacking geometries while preserving the integrity of the interfaces in poly(3-hexylthiophene-2,5-diyl) (P3HT): [6,6]-phenyl-C-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) films.

View Article and Find Full Text PDF

Extraction of cellulose nanocrystals from date seeds using transition metal complex-assisted hydrochloric acid hydrolysis.

Int J Biol Macromol

January 2025

Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:

In this study, the role of a transition metal complex in improving hydrolysis efficiency during nanocellulose production was analysed. Cellulose nanocrystals (CNCs) were extracted from date seeds by incorporating a copper metal complex during HCl hydrolysis. In contrast to traditional HCl hydrolysis at moderate conditions, which yielded only microcrystalline cellulose (MCC), this approach resulted in the extraction of CNCs with a 10 % improved yield compared to MCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!