Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Steganography is used to hide sensitive types of data including images, audio, text, and videos in an invisible way so that no one can detect it. Image-based steganography is a technique that uses images as a cover media for hiding and transmitting sensitive information over the internet. However, image-based steganography is a challenging task due to transparency, security, computational efficiency, tamper protection, payload, etc. Recently, different image steganography methods have been proposed but most of them have reliability issues. Therefore, to solve this issue, we propose an efficient technique based on the Least Significant Bit (LSB). The LSB substitution method minimizes the error rate in the embedding process and is used to achieve greater reliability. Our proposed image-based steganography algorithm incorporates LSB substitution with Magic Matrix, Multi-Level Encryption Algorithm (MLEA), Secret Key (SK), and transposition, flipping. We performed several experiments and the results show that our proposed technique is efficient and achieves efficient results. We tested a total of 165 different RGB images of various dimensions and sizes of hidden information, using various Quality Assessment Metrics (QAMs); A name of few are; Normalized Cross Correlation (NCC), Image Fidelity (IF), Peak Signal Noise Ratio (PSNR), Root Mean Square Error (RMSE), Quality Index (QI), Correlation Coefficient (CC), Structural Similarity Index (SSIM), Mean Square Error (MSE), Entropy, Contrast, and Homogeneity, Image Histogram (IH). We also conducted a comparative analysis with some existing methods as well as security analysis which showed better results. The achieved result demonstrates significant improvements over the current state-of-the-art methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-83147-3 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695990 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!