Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The energy cascade, i.e. the transfer of kinetic energy from large-scale to small-scale flow motions, has been the cornerstone of turbulence theories and models since the 1940s. However, understanding the spatial organization of the energy transfer has remained elusive. In this work, we answer the question: What are the characteristic flow patterns surrounding regions of intense energy transfer? To that end, we utilize numerical data of isotropic turbulence to investigate the three-dimensional spatial structure of the energy cascade in the inertial range. Our findings indicate that forward energy-transfer events are predominantly confined in the high strain-rate region created between two distinct zones of elevated enstrophy. On average, these zones manifest in the form of two hairpin-like shapes with opposing orientations. The mean velocity field associated with the energy transfer exhibits a saddle point topology when observed in the frame of reference local to the event. The analysis also shows that the primary driving mechanism for the cascade involves strain-rate self-amplification, which is responsible for 85% of the energy transfer, whereas vortex stretching accounts for less than 15%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696285 | PMC |
http://dx.doi.org/10.1038/s41598-024-80698-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!