Wireless energy-responsive systems provide a foundational platform for powering and operating intelligent devices. However, current electronic systems relying on complex components limit their effective deployment in ambient environment and seamless integration of energy harvesting, storage, sensing, and communication. Here, we disclose a coupling effect of electromagnetic wave absorption and moist-enabled generation on carrier transportation and energy interaction regulated by ionic diode effect. As demonstration, a wireless energy interactive system is established for electromagnetic-moist coupled energy harvesting and signal transmission through highly integrated polyelectrolyte/conjugated conductive polymer bilayer ionic diode films as dynamic energy-switching carriers. The gradient distribution of ions within the films, excited by moist energy, enables the ionic rectification and further endows the films with electromagnetic energy harvesting capability. In turn, the absorbed electromagnetic energy drives the directional migration of charge carriers and internal ionic current. By rationally regulating the electrolyte and dielectric properties of ionic diodes, it becomes feasible to control targeted electric signals and energy outputs under coupled electromagnetic-moist environment. This work is a step towards enabling enhanced smart interactivities for wirelessly driven flexible electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-024-55030-2 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697010 | PMC |
ACS Nano
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.
View Article and Find Full Text PDFSci Adv
January 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.
Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
Multiple far-red light-adapted photosystem I (FR-PSI) reaction centers are recently found to work in oxygenic photosynthesis. They contain a small amount of a new type pigment chlorophyll (Chl ) in addition to the major pigment chlorophyll (Chl ). FR-PSI differs from the conventional PSIs in plants and cyanobacteria, which use only visible light absorbed by Chl , although the mechanism of FR-PSI is not fully clear yet.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Science and Engineering, Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, Anhui University, Hefei, Anhui 230601, China.
The triboelectric nanogenerator (TENG) has been proved to be a very promising marine energy harvesting technology. Herein, we have developed a high-performance triboelectric nanogenerator (SD-TENG) with low friction, high durability, swing-induced counter-rotating motion mechanism (SICRMM) and dual potential energy storage and release strategy (DPESRS). The unique counter-rotating motion mechanism enabled SD-TENG to convert the external linear and swing motion energy into rotation motion energy of the inner and outer cylinders, and then converted it into a controllable power output.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Griffith University, Griffith School of Environment, Centre for Clean Environment and Energy, 4222, Brisbane, AUSTRALIA.
Converting biomass-derived molecules like 5-hydroxymethylfurfural (HMF) into value-added products alongside hydrogen production using renewable energy offers significant opportunities for sustainable chemical and energy production. Yet, HMF electrooxidation requires strong alkaline conditions and membranes for efficient conversion. These harsh conditions destabilize HMF, leading to humin formation and reduced product purity, meanwhile membranes increase costs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!