Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Regioselective -alkylation of benzotriazole is highly important to prepare biological materials. Herein, a series of AB-typed porphyrin and metalloporphyrin compounds were prepared. Catalytic results disclosed that Ir(III) pentafluorophenyl-substituted porphyrin promoted selective -alkylation of benzotriazole, and meanwhile, Fe(III) pyridine-substituted porphyrin accelerated -alkylation of benzotriazole. The metalloporphyrin could be used as a linker and inserted into a two-dimensional metal-organic framework; the resultant composite behaved as a heterogeneous catalyst, which could be recycled and reused for at least 6 times without any decrease of activity. This work demonstrates that the introduction of appropriate functional groups into metalloporphyrin at the meso-position is an effective strategy to regulate the reactivity and selectivity of substitution of benzotriazoles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c04105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!