Triggering the anionic redox reaction is an effective approach to boost the capacity of layered transition metal (TM) oxides. However, the irreversible oxygen release and structural deterioration at high voltage remain conundrums. Herein, a strategy for Mg ion and vacancy dual doping with partial TM ions pinned in the Na layers is developed to improve both the reversibility of anionic redox reaction and structural stability of layered oxides. Both the Mg ions and vacancies (□) are contained in the TM layers, while partial Mn ions (~1.1%) occupy the Na-sites. The introduced Mg ions combined with vacancies not only create abundant nonbonding O 2p orbitals in favor of high oxygen redox capacity, but also suppress the voltage decay originated from Na-O-□ configuration. The Mn ions pinned in the Na layers act as "rivets" to restrain the slab gliding at extreme de-sodiated state and thereby inhibit the generation of cracks. The positive electrode, NaMn[Mg□Mn]O, delivers an enhanced discharge capacity and decent cyclability. This study provides insights into the construction of stable layered oxide positive electrode with highly reversible anionic redox reaction for sodium storage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695597 | PMC |
http://dx.doi.org/10.1038/s41467-024-54998-1 | DOI Listing |
Mikrochim Acta
January 2025
Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).
View Article and Find Full Text PDFBackground: In Alzheimer's disease (AD), histone acetylation is disrupted, suggesting loss of transcriptional control. Moreover, converging evidence suggests an age- and AD-dependent loss of transcription controlled by all-trans-retinoic acid (ATRA), the bioactive metabolite of vitamin A (VA). Antioxidant depletion causes oxidative stress (OS).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
Background: Mitochondrial reactive oxygen species (mROS), such as superoxide and hydrogen peroxide (HO), are implicated in aging-associated neurological disorders, including Alzheimer's Disease and frontotemporal dementia. Mitochondrial complex III of the respiratory chain has the highest capacity for mROS production and generates mROS toward the cytosol, poising it to regulate intracellular signaling and disease mechanisms. However, the exact triggers of complex III-derived ROS (CIII-ROS), its downstream molecular targets, and its functional roles in dementia-related pathogenesis remain unclear.
View Article and Find Full Text PDFSynapse
January 2025
Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico.
Brain aging is a multifactorial process that includes a reduction in the biological and metabolic activity of individuals. Oxidative stress and inflammatory processes are characteristic of brain aging. Given the current problems, the need arises to implement new therapeutic approaches.
View Article and Find Full Text PDFNat Commun
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
Triggering the anionic redox reaction is an effective approach to boost the capacity of layered transition metal (TM) oxides. However, the irreversible oxygen release and structural deterioration at high voltage remain conundrums. Herein, a strategy for Mg ion and vacancy dual doping with partial TM ions pinned in the Na layers is developed to improve both the reversibility of anionic redox reaction and structural stability of layered oxides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!