Endowing single-crystal polymers with circularly polarized luminescence.

Nat Commun

Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Published: January 2025

The preparation of single-crystal polymers with circularly polarized luminesce (CPL) remains a challenging task in chemistry and materials science. Herein, we present the single-crystal-to-single-crystal topochemical photopolymerization of a chiral organic salt to achieve this goal. The in-situ reaction of 1,4-bis((E)-2-(pyridin-4-yl)vinyl)benzene (1) with chiral (+)- or (-)-camphorsulfonic acid (CSA) gives the monomer crystal 1[( + )/( - )-CSA] showing yellow CPL with a high luminescent dissymmetry factor |g| of 0.035 and emission quantum yield Φ of 49.7%. Upon photo-induced topochemical [2 + 2] polymerization, single-crystal polyionic polymers of poly-1[( + )/( - )-CSA] are obtained. The single-crystal-to-single-crystal (SCSC) photopolymerization is revealed by in situ powder X-ray diffraction, single-crystal X-ray, optical microscopy, infrared, circular dichroism, and CPL spectroscopic analyzes. Interestingly, the photopolymer crystals show blue and handedness-inverted CPL with |g| of 0.011 (Φ = 14.2%), with respect to the yellow CPL of the monomer crystal. Furthermore, patterned circularly-polarized photonic heterojunctions with alternate blue and yellow CPL sub-blocks are prepared by a mask-assisted photopolymerization method. Our findings provide a vision for fabricating high-performance CPL-active crystalline polymer materials, paving the way for the further development of photo-response chiral systems.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55181-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696868PMC

Publication Analysis

Top Keywords

yellow cpl
12
single-crystal polymers
8
polymers circularly
8
circularly polarized
8
monomer crystal
8
cpl
6
endowing single-crystal
4
polarized luminescence
4
luminescence preparation
4
preparation single-crystal
4

Similar Publications

Endowing single-crystal polymers with circularly polarized luminescence.

Nat Commun

January 2025

Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

The preparation of single-crystal polymers with circularly polarized luminesce (CPL) remains a challenging task in chemistry and materials science. Herein, we present the single-crystal-to-single-crystal topochemical photopolymerization of a chiral organic salt to achieve this goal. The in-situ reaction of 1,4-bis((E)-2-(pyridin-4-yl)vinyl)benzene (1) with chiral (+)- or (-)-camphorsulfonic acid (CSA) gives the monomer crystal 1[( + )/( - )-CSA] showing yellow CPL with a high luminescent dissymmetry factor |g| of 0.

View Article and Find Full Text PDF

Here, we report the synthesis and self-assembly of a novel chiral 2,3:6,7‒naphthalenediimide-based triangular macrocycle (NDI-∆) and their chiroptical properties. The enantiomeric NDI-∆ is synthesized by condensation of (RR) or (SS)-trans-1,2-cyclohexanediamine and 2,3,6,7-naphthalenetetracarboxylic 2,3:6,7-dianhydride, in which the chirality of the macrocycles is controlled by the diamine. With the rigid outer π-surface, the macrocycle showed unique chiroptical properties and self-assembly modes.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) materials with precisely controlled emission colors and handedness are highly desirable for their promising applications in advanced optical technologies, but it is rather challenging to obtain them primarily due to the lack of convenient, powerful, and universal preparation strategies. Herein, we report a simple yet versatile solution route for constructing multicolor CPL materials with controllable handedness from nonchiral luminescent charge-transfer (CT) complexes through co-assembly with chiral N-terminal aromatic amino acids. The resulting ternary co-assemblies exhibit obvious CPL signals from 489 to 601 nm, covering from blue green and yellow to orange-red.

View Article and Find Full Text PDF

Reversible Circularly Polarized Luminescence Inversion and Emission Color Switching in Photo-Modulated Supramolecular Polymer for Multi-Modal Information Encryption.

J Am Chem Soc

December 2024

Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China.

Constructing circularly polarized luminescence (CPL) materials that exhibit dynamic handedness inversion and emissive color modulation for multimodal information encryption presents both a significant challenge and a compelling opportunity. Here, we have developed a pyridinethiazole acrylonitrile-cholesterol derivative (Z-PTC) that exhibits wavelength-dependent photoisomerization and photocyclization, enabling dynamic handedness inversion and emissive color modulation in supramolecular assemblies with decent CPL activity. Coordination with Ag ions form the Z-PTC Ag supramolecular polymer (SP), which assembles into nanotubes displaying enhanced positive yellow-green CPL.

View Article and Find Full Text PDF

Cowpea legumin preservative impacts on beef ribeye and implications on antibiotic resistant food borne pathogens.

NPJ Sci Food

November 2024

Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Tukh Qalyubia, Benha, 13736, Egypt.

Article Synopsis
  • - The study examined the effectiveness of Cowpea-legumin (CPL) in inhibiting antibiotic-resistant foodborne pathogens (FBP) and its impact on the quality and shelf-life of Longissimus thoracis et lumborum (LTL) steaks during 15 days of chilling at 4°C.
  • - Antibiotic-resistant Salmonella enterica and E. coli showed MICs of 25 and 3.125 mg/mL with CPL, while antibiotic-susceptible bacteria were effectively suppressed at 0.1 mg/mL.
  • - CPL not only enhanced the quality and color of the LTL steaks but also exhibited significant antioxidant and antibacterial properties, suggesting its potential as an effective preservative in combating antibiotic resistance
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!