Background: Yes-associated protein (YAP) is a crucial mechanosensor involved in mechanotransduction, but its role in regulating mechanical force-induced bone remodeling during orthodontic tooth movement (OTM) is unclear. This study aims to elucidate the relationship between mechanotransduction and mechanical force-induced alveolar bone remodeling during OTM.
Results: Our study confirms an asynchronous (temporal and spatial sequence) remodeling pattern of the alveolar bone under mechanical force during OTM. Both compression and tension activate osteoclasts recruiting to the alveolar bone, whereas no significant presence of osteoblasts in the alveolar bone at the early stages of bone remodeling. Specifically, applying different force magnitudes (10, 25, 50, 100 g) to rats' 1st molars affected OTM distance. Force-induced alveolar bone remodeling was characterized by osteoclastogenesis and YAP activation at compressive/tensile sites on day 1 of OTM. Notably, 25 g force triggered peak YAP expression and osteoclastic activity early on. Time-course analysis revealed two YAP activity peaks on day1 and 14, contrasting with one peak of type I collagen expression on day14. In addition, RNA-sequencing highlighted increased nuclear factor kappa B (NF-κB) signaling, mineral absorption, and osteoclast differentiation at day-1 and 3. Moreover, gene expression analysis showed similar trends for NF-κB p65, YAP1, and TEA domain 1 (TEAD1) during this time. Furthermore, experiments on osteoclast cultures indicated YAP activation via large tumor suppressor (LATS) and TEAD under mechanical stimuli (compression/tension), promoting osteoclastogenesis by regulating NF-κB p65 and receptor activator of NF-κB (RANK). Inhibiting YAP with verteporfin delayed OTM by impairing force-induced osteoclastic activities in vivo and ex-vivo.
Conclusions: We propose that YAP mediates alveolar bone remodeling through NF-κB p65-induced osteoclastogenesis in an asynchronous remodeling pattern during OTM. Both compression and tension activate osteoclasts recruiting to the alveolar bone at early stages of bone remodeling, offering evidence for orthodontists as a reference.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s40510-024-00548-w | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695529 | PMC |
Am J Sports Med
January 2025
Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
Background: Selective androgen receptor modulators (SARMs) are small-molecule compounds that exert agonist and antagonist effects on androgen receptors in a tissue-specific fashion. Because of their performance-enhancing implications, SARMs are increasingly abused by athletes. To date, SARMs have no Food and Drug Administration approved use, and recent case reports associate the use of SARMs with deleterious effects such as drug-induced liver injury, myocarditis, and tendon rupture.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.
View Article and Find Full Text PDFAims: ultrasound (US) diagnosis of enthesitis is burdened of low specificity, especially when it is performed in patients with psoriasis (PsO) but without clinical psoriatic arthritis (PsA), because of mechanical, dysmetabolic and age-related concurrent enthesopatic changes. We propose a novel US score to quantify the cortical-entheseal bone remodeling burden of several peripheral entheses, aiming to improve the specificity of US for PsA-related enthesitis, and to evaluate its diagnostic value in PsO patients with subsequent diagnosis of psoriatic arthritis (PsO/PsA).
Methods: clinical and US data of 119 consecutive patients with moderate/severe PsO and nonspecific musculoskeletal symptoms, were included in this retrospective study.
Regen Med
January 2025
Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA.
This study assessed the feasibility of miR17 ~ 92-based antiresorptive strategy by determining the effects of conditional transgenic (cTG) overexpression of miR17 ~ 92 in myeloid cells on bone and osteoclasts. Osteoclasts of male and female cTG mutant mice each showed 3- to fivefold overexpression of miR17 ~ 92 cluster genes compared to those of age- and sex-matched wildtype (WT) littermates. Male but not female cTG mutant mice had more trabecular and cortical bones as well as lower bone resorption reflected by reduction in osteoclast number and resorbing surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!