Estimating how the human body moves in space and time-body kinematics-has important applications for industry, healthcare, and several research fields. Gold-standard methodologies capturing body kinematics are expensive and impractical for naturalistic recordings as they rely on infrared-reflective wearables and bulky instrumentation. To overcome these limitations, several algorithms have been developed to extract body kinematics from plain video recordings. This comes with a drop in accuracy, which however has not been clearly quantified. To fill this knowledge gap, we analysed a dataset comprising 46 human participants exhibiting spontaneous movements of varying amplitude. Body kinematics were estimated using OpenPose (video-based) and Vicon (infrared-based) motion capture systems simultaneously. OpenPose accuracy was assessed using Vicon estimates as ground truth. We report that OpenPose accuracy is overall moderate and varies substantially across participants and body parts. This is explained by variability in movement amplitude. OpenPose estimates are weak for low-amplitude movements. Conversely, large-amplitude movements (i.e., > ~ 10 cm) yield highly accurate estimates. The relationship between accuracy and movement amplitude is not linear (but mostly exponential or power) and relatively robust to camera-body distance. Together, these results dissect the limits of video-based motion capture and provide useful guidelines for future studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695451 | PMC |
http://dx.doi.org/10.3758/s13428-024-02546-6 | DOI Listing |
J Occup Environ Hyg
January 2025
Department of Kinesiology & Health Promotion, University of Kentucky, Lexington, Kentucky.
Farmers may be at a higher risk of developing hip osteoarthritis (OA) due to the high demands of their occupation. To the authors' knowledge, the gait patterns of farmers that may be associated with hip joint degeneration have yet to be analyzed. Therefore, this study compares gait mechanics between farmers and non-farmers (controls).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.
Purpose: The present study is to explore the appropriate plantar support force for its effect on improving the collapse of the medial longitudinal arch with flexible flatfoot.
Methods: A finite element model with the plantar fascia attenuation was constructed simulating as flexible flatfoot. The appropriate plantar support force was evaluated.
PLoS One
January 2025
Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium.
Background: Increasing one's walking speed is an important goal in post-stroke gait rehabilitation. Insufficient arm swing in people post-stroke might limit their ability to propel the body forward and increase walking speed.
Purpose: To investigate the speed-dependent changes (and their contributing factors) in the arm swing of persons post-stroke.
Sci Rep
January 2025
Department of Rehabilitation, University Hospital Olomouc, Olomouc, Czech Republic.
Motor imagery (MI) is a mental simulation of a movement without its actual execution. Our study aimed to assess how MI of two modalities of gait (normal gait and much more posturally challenging slackline gait) affects muscle activity and lower body kinematics. Electromyography (biceps femoris, gastrocnemius medialis, rectus femoris and tibialis anterior muscles) as well as acceleration and angular velocity (shank, thigh and pelvis segments) data were collected in three tasks for both MI modalities of gait (rest, gait imagery before and after the real execution of gait) in quiet bipedal stance in 26 healthy young adults.
View Article and Find Full Text PDFBehav Res Methods
January 2025
Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, 00161, Rome, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!