Purpose: To investigate the protective effect and mechanism of enhanced expression of endogenous macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury.
Methods: A recombinant double-stranded adeno-associated virus serotype 9 with MIF or green fluorescent protein (GFP) genes (dsAAV9-MIF/GFP) was transduced into mice and neonatal rat ventricular myocytes (NRVMs). The models of cardiac 60 min ischemia and 24 h reperfusion and 12 h hypoxia/12 h reoxygenation (H/R) were established in mice and NRVMs, respectively. Infarct size, cardiac remodeling, and related signaling pathways were assessed.
Results: The dsAAV9 vector demonstrated strong transduction efficacy and cardiac affinity. Cardiac overexpression of MIF led to a 35.3% reduction in infarct size and improved cardiac function following I/R injury. In the dsAAV9-MIF group, the AMP-activated protein kinase (AMPK) signaling pathway was activated, and autophagy was enhanced during the ischemic period. During reperfusion, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway was upregulated, leading to reduced cardiac apoptosis. In vitro, transfection with MIF in NRVMs also upregulated AMPK and ERK1/2 signaling during hypoxia and reoxygenation, respectively. Furthermore, MIF overexpression significantly improved autophagy and mitochondrial function, evidenced by an increased LC3-II/I ratio and enhanced mitochondrial membrane potential (ΔΨm), with these effects reversed by the AMPK inhibitor compound C. Additionally, MIF overexpression led to a 60% reduction in the apoptosis rate of cardiomyocytes subjected to H/R and decreased the Bax/Bcl-2 ratio, partially through the ERK1/2 signaling pathway.
Conclusion: Enhanced endogenous MIF expression via the dsAAV9 vector provides significant cardioprotection against I/R injury by activating the AMPK and ERK1/2 signaling pathways. Our findings suggest that targeting MIF may represent a viable therapeutic strategy for severe and prolonged I/R injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10557-024-07662-1 | DOI Listing |
Cell Signal
January 2025
Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea. Electronic address:
Oxidative stress caused by reactive oxygen species (ROS) and superoxides is linked to various cancer-related biological events. Extracellular superoxide dismutase (SOD3), an antioxidant enzyme that removes superoxides, contributes to redox homeostasis and has the potential to regulate tumorigenesis. Histone deacetylase 6 (HDAC6), a major HDAC isoform responsible for mediating the deacetylation of non-histone protein substrates, also plays a role in cancer progression.
View Article and Find Full Text PDFJ Oral Biosci
January 2025
Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan. Electronic address:
Objectives: Temporomandibular joint (TMJ) osteoarthritis (OA) is an inflammatory disease that involves periarthritis of the TMJ and destruction of cartilage tissue in the mandibular condyle. However, the role of proinflammatory cytokines in the expression levels of matrix metalloproteinase (MMP) remains inconclusive. Thus, in this study, we aimed to investigate the effect of proinflammatory cytokines on the expression of MMPs.
View Article and Find Full Text PDFPoult Sci
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China. Electronic address:
For commercial laying hens, the continuous high-intensity ovulation process leads to a significant accumulation of reactive oxygen species (ROS) in the granulosa cells, inducing oxidative stress, which accelerates ovarian aging and shortens the peak laying period. The molecular mechanisms underlying this process remain poorly understood. Therefore, we modeled the processes of oxidative stress and antioxidant in chicken granulosa cells.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA.
Background: Presenilin1 (PS1)/γ-secretase cleaves within the transmembrane domain of numerous receptor substrates. Mutations in PS1 have implications on the catalytic subunit of γ-secretase decreasing its activity and becoming a potential causative factor for Familial Alzheimer's Disease (FAD). This work studies the role of PS1/γ-secretase on the processing, angiogenic signaling, and functions of VEGFR2 and the effects of PS1 FAD mutants on the γ-secretase-mediated epsilon cleavage of VEGFR2.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
Background: Multiple AD risk genes are implicated in lipid metabolism, and plasma and brain lipid levels are altered in AD. Astrocytes are enriched in key lipid-related factors and are likely contributors to altered lipid homeostasis in AD. We hypothesize that APP/Aβ-related pathology and neuroimmune factors modulate astrocytic gene transcription that promote maladaptive changes in lipid pathways, including aberrant astrocytic production and release of lipids that could affect Aβ pathology and neuronal deficits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!