Transposase genes are ubiquitous in all domains of life and provide a rich reservoir for the evolution of novel protein functions. Here we report deep evolutionary links between bacterial IS110-family transposases, which catalyse RNA-guided DNA recombination using bridge RNAs, and archaeal/eukaryotic Nop5-family proteins, which promote RNA-guided RNA 2'-O-methylation using C/D-box snoRNAs. On the basis of conservation of protein sequence, domain architecture, three-dimensional structure and non-coding RNA features, alongside phylogenetic analyses, we propose that programmable RNA modification emerged through the exaptation of components derived from IS110-like transposons. These findings underscore how recurrent domestication events of transposable elements have driven the evolution of RNA-guided mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41564-024-01889-2DOI Listing

Publication Analysis

Top Keywords

rna-guided rna
8
rna modification
8
evolutionary origins
4
origins archaeal
4
archaeal eukaryotic
4
rna-guided
4
eukaryotic rna-guided
4
rna
4
modification bacterial
4
bacterial is110
4

Similar Publications

Transposase genes are ubiquitous in all domains of life and provide a rich reservoir for the evolution of novel protein functions. Here we report deep evolutionary links between bacterial IS110-family transposases, which catalyse RNA-guided DNA recombination using bridge RNAs, and archaeal/eukaryotic Nop5-family proteins, which promote RNA-guided RNA 2'-O-methylation using C/D-box snoRNAs. On the basis of conservation of protein sequence, domain architecture, three-dimensional structure and non-coding RNA features, alongside phylogenetic analyses, we propose that programmable RNA modification emerged through the exaptation of components derived from IS110-like transposons.

View Article and Find Full Text PDF

Cas12e orthologs evolve variable structural elements to facilitate dsDNA cleavage.

Nat Commun

December 2024

Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Exceptionally diverse type V CRISPR-Cas systems provide numerous RNA-guided nucleases as powerful tools for DNA manipulation. Two known Cas12e nucleases, DpbCas12e and PlmCas12e, are both effective in genome editing. However, many differences exist in their in vitro dsDNA cleavage activities, reflecting the diversity in Cas12e's enzymatic properties.

View Article and Find Full Text PDF

RNA-guided endonucleases are involved in processes ranging from adaptive immunity to site-specific transposition and have revolutionized genome editing. CRISPR-Cas9, -Cas12 and related proteins use guide RNAs to recognize ∼20-nucleotide target sites within genomic DNA by mechanisms that are not yet fully understood. We used structural and biochemical methods to assess early steps in DNA recognition by Cas12a protein-guide RNA complexes.

View Article and Find Full Text PDF

CRISPR in mobile genetic elements: counter-defense, inter-element competition and RNA-guided transposition.

BMC Biol

December 2024

Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.

CRISPR are adaptive immunity systems that protect bacteria and archaea from viruses and other mobile genetic elements (MGE) via an RNA-guided interference mechanism. However, in the course of the host-parasite co-evolution, CRISPR systems have been recruited by MGE themselves for counter-defense or other functions. Some bacteriophages encode fully functional CRISPR systems that target host defense systems, and many others recruited individual components of CRISPR systems, such as single repeat units that inhibit host CRISPR systems and CRISPR mini-arrays that target related viruses contributing to inter-virus competition.

View Article and Find Full Text PDF

The bacterial retron reverse transcriptase system has served as an intracellular factory for single-stranded DNA in many biotechnological applications. In these technologies, a natural retron non-coding RNA (ncRNA) is modified to encode a template for the production of custom DNA sequences by reverse transcription. The efficiency of reverse transcription is a major limiting step for retron technologies, but we lack systematic knowledge of how to improve or maintain reverse transcription efficiency while changing the retron sequence for custom DNA production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!