We engineered a microfluidic platform to study the effects of bioactive glass nanoparticles (BGNs) on cell viability under static culture. We incorporated different concentrations of BGNs (1%, 2%, and 3% w/v) in collagen hydrogel (with a concentration of 3.0 mg/mL). The microfluidic chip's dimensions were optimized through fluid flow and mass transfer simulations. Collagen type I extracted from rat tail tendons was used as the main material, and BGNs synthesized by the sol-gel method were used to enhance the mechanical properties of the hydrogel. The extracted collagen was characterized using FTIR and SDS-PAGE, and BGNs were analyzed using XRD, FTIR, DLS, and FE-SEM/EDX. The structure of the collagen-BGNs hydrogels was examined using SEM, and their mechanical properties were determined using rheological analysis. The cytotoxicity of BGNs was assessed using the MTT assay, and the viability of fibroblast (L929) cells encapsulated in the collagen-BGNs hydrogel inside the microfluidic device was assessed using a live/dead assay. Based on all these test results, the L929 cells showed high cell viability in vitro and promising microenvironment mimicry in a microfluidic device. Collagen3-BGNs3 (Collagen 3 mg/mL + BGNs 3% (w/v)) was chosen as the most suitable sample for further research on a microfluidic platform.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-84346-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696724PMC

Publication Analysis

Top Keywords

microfluidic platform
8
cell viability
8
mechanical properties
8
l929 cells
8
microfluidic device
8
microfluidic
6
collagen
5
bgns
5
microfluidic cell
4
cell culture
4

Similar Publications

Tuberculosis (TB) is the second deadliest infectious disease worldwide. Current TB diagnostics utilize sputum samples, which are difficult to obtain, and sample processing is time-consuming and difficult. This study developed an integrated diagnostic platform for the rapid visual detection of Mycobacterium tuberculosis (Mtb) in breath samples at the point-of-care (POC), especially in resource-limited settings.

View Article and Find Full Text PDF

In this study, a convenient method was proposed for the synthesis of thymine-capped mesoporous silica nanoparticles (MSN) using strong hydrogen bonding in non-protonic solvent. Furthermore, application of the functionalized MSN for the recognition of mercuric ion (Hg) based on a paper-based platform with smartphone-assisted colorimetric detection was developed. The synthesized materials were characterized by techniques including X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), N adsorption-desorption, particle size analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Toronto, Toronto, ON, Canada.

Background: Drug discovery efforts in neurological diseases, such as Alzheimer's disease (AD), have had particularly poor outcomes due to the lack of models that capture the cerebral vasculature. There is an unmet need to develop models that capture the physiological challenge of overcoming the blood-brain barrier (BBB) and impacts of blood flow-induced shear stress. In this work, we use a microfluidic platform to model the cerebral vasculature in familial AD (fAD) using patient-derived brain endothelial-like cells (BECs) and neurons.

View Article and Find Full Text PDF

Integrating Particle Motion Tracking into Thermal Gel Electrophoresis for Label-Free Sugar Sensing.

ACS Sens

January 2025

Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States.

Bioanalytical sensors are adept at quantifying target analytes from complex sample matrices with high sensitivity, but their multiplexing capacity is limited. Conversely, analytical separations afford great multiplexing capacity but typically require analyte labeling to increase sensitivity. Here, we report the development of a separation-based sensor to sensitively quantify unlabeled polysaccharides using particle motion tracking within a microfluidic electrophoresis platform.

View Article and Find Full Text PDF

An integrated magnetoimpedance biosensor microfluidic magnetic platform for the evaluation of the cardiac marker cTnI.

Anal Methods

January 2025

Microelectronic Research & Development Center, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.

An integrated magnetoimpedance (MI) biosensor microfluidic magnetic platform was proposed for the evaluation of the cardiac marker, cardiac troponin I (cTnI). This bioanalyte evaluation platform mainly comprised three external permanent magnets (PMs), one MI element, two peelable SiO film units and a microfluidic chip (MFC). The MI element was made of micro-electro-mechanical system (MEMS)-based multilayered [Ti (6 nm)/FeNi (100 nm)]/Cu (400 nm)/[Ti (6 nm)/FeNi (100 nm)] thin films and designed as meander structures with closed magnetic flux.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!