A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A bi-level optimization strategy of electricity-hydrogen-carbon integrated energy system considering photovoltaic and wind power uncertainty and demand response. | LitMetric

To address the power supply-demand imbalance caused by the uncertainty in wind turbine and photovoltaic power generation in the regional integrated energy system, this study proposes a bi-level optimization strategy that considers the uncertainties in photovoltaic and wind turbine power generation as well as demand response. The upper-level model analyzes these uncertainties by modeling short-term and long-term output errors using robust optimization theory, applies an improved stepwise carbon trading model to control carbon emissions, and finally constructs an electricity-hydrogen-carbon cooperative scheduling optimization model to reduce wind and carbon emissions. The lower-level model incentivizes users to participate in integrated demand response through dynamic energy pricing, thereby reducing the annual consumption cost of load aggregator. The Karush-Kuhn-Tucker conditions and the Big-M method are used to solve the bi-level optimization model. Simulation results indicate that the improved carbon trading model reduces carbon emissions by approximately 40.12 tons per year, a decrease of 1.1%; the prediction accuracy of the short-term error model improves by 6.77%, and the prediction accuracy of the long-term error model improves by 15.16%; the electricity-hydrogen-carbon synergistic dispatch optimization model enhances the total profit of integrated energy system operator by 14.07% and reduces the total cost of load aggregator by 10.06%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696543PMC
http://dx.doi.org/10.1038/s41598-024-84605-8DOI Listing

Publication Analysis

Top Keywords

bi-level optimization
12
integrated energy
12
energy system
12
demand response
12
carbon emissions
12
optimization model
12
model
9
optimization strategy
8
photovoltaic wind
8
wind turbine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!