Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Smart water injection (SWI) is a practical enhanced oil recovery (EOR) technique that improves displacement efficiency on micro and macro scales by different physiochemical mechanisms. However, the development of a reliable smart tool to predict oil recovery factors is necessary to reduce the challenges related to experimental procedures. These challenges include the cost and complexity of experimental equipment and time-consuming experimental methods for obtaining the recovery factor (RF). In this paper, three predictive algorithms including adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), and multigene genetic programming (MGGP) are developed to predict the RF of smart water flooding in carbonate reservoirs. Accordingly, 205 data points from coreflooding tests and 122 from Amott-cell tests were collected from previous studies. Porosity, permeability, oil viscosity, and oil density at reservoir temperature, injection rate, total dissolved solids (TDS), temperature, injection time, and initial water saturation (S) were selected as the input parameters. Results show the great performance of ANN, compared to other employed algorithms. Coefficients of determination (R) of ANN obtained from Amott-cell data for training, testing, validation, and overall data are 0.9748, 0.9021, 0.9765, and 0.9646, respectively. The corresponding values from coreflooding data are 0.9502, 0.9582, 0.9837, and 0.9523, respectively. Moreover, parametric sensitivity analysis was performed for the input parameters. Based on this analysis, time and injection rate have the most positive impact on the Amott-cell and coreflooding, respectively. Sensitivity analysis from Amott-cell data introduces TDS and oil viscosity have the most negative effects on RF performance. Furthermore, the most negative effects belong to porosity and permeability for coreflooding experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697442 | PMC |
http://dx.doi.org/10.1038/s41598-024-84402-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!