Cigarette filter microplastics are composed of cellulose acetate that does not undergo biological or photo-degradation. These microplastics are readily dispersed and can be found abundantly in water, soil, and air. These fibers possess high absorption capabilities, allowing them to collect and retain pollutants such as toxic elements. As a result, they are regarded as potential dangers to living organisms. The purpose of this study was to analyze the immune response of human peripheral blood mononuclear cells (PBMCs) when exposed to cigarette filter microfibers, measuring the secretion of the inflammatory cytokines TNFα (tumor necrosis factor-alpha) and IL-6 (interleukin-6). In this study, we examined how used cigarette cellulose acetate microfibers affect the viability of peripheral blood mononuclear cells in an appropriate culture medium at three concentrations: 50, 100, and 200 µg/ml. In addition, this study investigated the release of inflammatory cytokines TNFα and IL6 from PBMCs exposed to 200 µg/ml cigarette filter cellulose acetate. The results showed that increasing the concentration of cellulose acetate fibers of one of the brands in the culture medium has a significant effect on reducing cell viability. The 200 µg/ml in DW is more effective than 50 and 100 µg/ml in reducing cell viability. Peripheral blood mononuclear cells showed an inflammatory immune response when exposed to 200 µg/ml cellulose acetate from cigarette filters. They produced inflammatory cytokines that showed a significant increase compared to the control sample. In general, it can be concluded that cellulose acetate fibers in contact with body cells stimulate them and cause an inflammatory response.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-84784-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696037PMC

Publication Analysis

Top Keywords

cellulose acetate
24
peripheral blood
16
blood mononuclear
16
mononuclear cells
16
cigarette filter
12
inflammatory cytokines
12
immune response
8
pbmcs exposed
8
cytokines tnfα
8
viability peripheral
8

Similar Publications

Cigarette filter microplastics are composed of cellulose acetate that does not undergo biological or photo-degradation. These microplastics are readily dispersed and can be found abundantly in water, soil, and air. These fibers possess high absorption capabilities, allowing them to collect and retain pollutants such as toxic elements.

View Article and Find Full Text PDF

Eco-Friendly, Sound Absorbing Materials Based on Cellulose Acetate Electrospun Fibers/Luffa Cylindrica Composites.

Macromol Rapid Commun

December 2024

Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue Nicosia, Aglantzia, 2109, Cyprus.

Sound absorption plays a crucial role in addressing noise pollution that may cause harm to both human health and wildlife. To tackle this environmental issue, the implementation of natural-based sound absorbing materials attracts considerable attention in the last few years. In this study, sound absorbing, eco-friendly composites are produced by combining a 3D natural sponge namely Luffa Cylindrica (LC) with cellulose acetate (CA) microfibrous layers that are fabricated through electrospinning.

View Article and Find Full Text PDF

Cigarette butts are classified as plastic waste due to their composition of cellulose acetate fibers and are commonly found in beach sand. Their persistence in the environment, low biodegradability, and potential to interact with metals and metalloids during the aging process make them a significant subject of interest for research on coastal marine ecosystems. The aim of this study is to investigate the presence of metals such as hexavalent chromium Cr (VI), cadmium (Cd), and the metalloid arsenic (As) in cigarette butts (CBs), cigarette butt fibers (CBFs), and sand on a tourist beach in Cartagena, Colombia.

View Article and Find Full Text PDF

Formation of Nonspherical Cellulose Acetate Microparticles under Microflow.

Langmuir

December 2024

Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.

Nonspherical particles have gained significant interest owing to their unique shapes and large specific surface areas, making them suitable for a wide range of applications, such as drug delivery, catalysis, and adsorption. However, conventional methods for preparing nonspherical particles face certain limitations. In this study, we propose a simple method for fabricating nonspherical cellulose acetate (CA) microparticles using a microfluidic device in which droplets undergo rapid diffusion in a continuous aqueous phase.

View Article and Find Full Text PDF

Cellulose was extracted from rice straw waste by the intergrated technique of CHOH/HO, dilute alkali treatment and HO bleaching process, and rice straw-derived cellulose acetate was obtained by the acetylation reaction of cellulose. Flexible porous 3D biochars were constructed by the electrospinning, NaBH foaming and calcination process. Effects of calcination temperature, adsorption time, pH, pollutant concentration, interfering anions, and cycle times on the adsorption performance of 3D biochar were systematically investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!