A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Probiotic Bacillus licheniformis DSMZ 28710 improves sow milk microbiota and enhances piglet health outcomes. | LitMetric

AI Article Synopsis

  • The study investigates how supplementing sow feed with the probiotic Bacillus licheniformis affects the milk microbiome and piglet health.
  • It found that this supplementation increased beneficial bacteria and decreased harmful ones in sow colostrum, improving microbiome diversity and function.
  • The research suggests that maintaining a healthy milk microbiome through supplementation could enhance nutrient delivery and immunity for better piglet development.

Article Abstract

Maintaining a diverse and balanced sow milk microbiome is essential to piglet development. Thus, this study aimed to examine the effects of probiotic Bacillus licheniformis supplementation on the microbiome composition of sow colostrum and milk, and to review associated health findings in piglets. B. licheniformis DSMZ 28710 was supplemented at 10 g/day as feed additive before predicted farrowing until weaning by top dressing. Colostrum and milk samples were collected for metagenomic DNA extraction, 16s rRNA sequencing, and bioinformatics analyses for bacterial microbiota diversity. Results indicated that the supplementation increased the abundances of beneficial bacteria, such as Lactobacillus, Pediococcus, Bacteroides, and Bifidobacterium, while decreasing the abundances of pathogenic bacteria, such as Staphylococcus aureus, Enterobacteriaceae, and Campylobacter in the colostrum. The supplementation increased diversity while maintaining richness and evenness. Moreover, the rise in predicted microbial community metabolic function in membrane transport pathways provides crucial evidence showing that the supplementation is potentially beneficial to piglets, as these pathways are important for providing nutrients and immunity to offspring. This research highlights the importance of microbiome composition in sow milk and the potential of B. licheniformis supplementation as a means to improve piglet health and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696930PMC
http://dx.doi.org/10.1038/s41598-024-84573-zDOI Listing

Publication Analysis

Top Keywords

sow milk
12
probiotic bacillus
8
bacillus licheniformis
8
licheniformis dsmz
8
dsmz 28710
8
piglet health
8
licheniformis supplementation
8
microbiome composition
8
composition sow
8
colostrum milk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!