Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study proposes a novel Bayesian damage identification method that uses an Improved Elemental Modal Strain Energy Ratio (IEMSER) to guide a sparse prior distribution. Measured frequencies and mode shapes develop the IEMSER indicator for preliminary damage assessment, forming the basis for a sparse prior distribution. Using the sparse prior and initial damage estimates, Markov Chain Monte Carlo (MCMC) sampling computes the posterior Probability Density Functions (PDFs) of damage parameters to determine the Maximum A Posteriori (MAP) estimates. The proposed method better utilizes the advantages of prior information in the Bayesian method, making the identified damage more accurate. A numerical case of a steel truss bridge shows that IEMSER's preliminary damage estimates closely match actual damage, yielding a reliable sparse prior and significantly improving identification accuracy. The method's effectiveness is further validated using modal test data from an 18-story frame structure, confirming its applicability to real structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697267 | PMC |
http://dx.doi.org/10.1038/s41598-024-84315-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!