This study presents the design and analysis of a compact 28 GHz MIMO antenna for 5G wireless networks, incorporating simulations, measurements, and machine learning (ML) techniques to optimize its performance. With dimensions of 3.19 λ₀ × 3.19 λ₀, the antenna offers a bandwidth of 5.1 GHz, a peak gain of 9.43 dBi, high isolation of 31.37 dB, and an efficiency of 99.6%. Simulations conducted in CST Studio were validated through prototype measurements, showing strong agreement between the measured and simulated results. To further validate the design, an equivalent RLC circuit model was developed and analyzed using ADS, with the reflection coefficient results closely matching those from CST. Additionally, supervised ML techniques were employed to predict the antenna's gain, evaluating nine models using metrics such as R-squared, variance score, mean absolute error, and root mean squared error. Among the models, Random Forest Regression achieved the highest accuracy, delivering approximately 99% reliability in gain prediction. This integration of machine learning with antenna design underscores its potential to optimize performance and enhance design efficiency. With its compact size, high isolation, and exceptional efficiency, the proposed antenna is a promising candidate for 28 GHz 5G applications, offering innovative solutions for next-generation wireless communication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696730PMC
http://dx.doi.org/10.1038/s41598-024-84182-wDOI Listing

Publication Analysis

Top Keywords

high isolation
12
gain prediction
8
machine learning
8
optimize performance
8
antenna
5
machine learning-based
4
learning-based technique
4
gain
4
technique gain
4
prediction mm-wave
4

Similar Publications

Nasopharyngeal carriage of Staphylococcus aureus in a rural population, Sierra Leone.

Int J Med Microbiol

December 2024

Institute of Medical Microbiology, University Hospital Münster, Münster, Germany; Masanga Medical Research Unit, Masanga Hospital, Masanga, Sierra Leone.

Background: Nasopharyngeal colonization with Staphylococcus aureus is a risk factor for subsequent infection. Isolates from colonization can therefore provide important information on virulence factors and antimicrobial resistance when data from clinical isolates are lacking. The aim of this study was to assess colonization rates, resistance patterns and selected virulence factors of S.

View Article and Find Full Text PDF

Purpose: Medial meniscus ramp lesions (MMRLs), lateral meniscus posterior root tears (LMPRTs), and anterolateral complex injuries (ALCIs) are major secondary stabiliser injuries associated with anterior cruciate ligament (ACL) injuries. This study aimed to investigate the effect of the number of secondary stabiliser injuries on knee instability in ACL injuries.

Methods: Patients who underwent primary ACL reconstruction between January 2017 and May 2023 were enroled in this study.

View Article and Find Full Text PDF

The implication of pericardial effusion in the third trimester for preeclampsia and heart failure in high-risk pregnant women.

J Echocardiogr

January 2025

Division of Cardiology, Department of Internal Medicine, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, 1035 Dalgubeol-Daero, Dalseo-Gu, Daegu, 42601, Republic of Korea.

Background: With the growing number of high-risk pregnant women, echocardiography frequently reveals pericardial effusion (PE). However, the clinical implications of PE are unknown.

Method: We analyzed a cohort of 406 high-risk pregnant women who underwent echocardiography in the third trimester between November 2019 and December 2022.

View Article and Find Full Text PDF

Background: Knee injuries resulting in purely cartilaginous defects are rare, and controversy remains regarding the reliability of chondral-only fixation.

Purpose: To systematically review the literature for fixation methods and outcomes after primary fixation of chondral-only defects within the knee.

Study Design: Systematic review; Level of evidence, 5.

View Article and Find Full Text PDF

The Mycobacterium avium complex (MAC) is a group of closely related nontuberculous mycobacteria that can cause various diseases in humans. In this study, genome sequencing, comprehensive genomic analysis, and antimicrobial susceptibility testing of 66 MAC clinical isolates from King Chulalongkorn Memorial Hospital, Bangkok, Thailand were carried out. Whole-genome average nucleotide identity (ANI) revealed the MAC species distribution, comprising 54 (81.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!