A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long-term variability of extreme precipitation with WRF model at a complex terrain River Basin. | LitMetric

Long-term variability of extreme precipitation with WRF model at a complex terrain River Basin.

Sci Rep

Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.

Published: January 2025

Global warming has profound effects on precipitation patterns, leading to more frequent and extreme precipitation events over the world. These changes pose significant challenges to the sustainable development of socio-economic and ecological environments. This study evaluated the performance of the new generation of the mesoscale Weather Research and Forecasting (WRF) model in simulating long-term extreme precipitation events over the Minjiang River Basin (MRB) of China from 1981 to 2020. We calculated 12 extreme precipitation indices from the WRF simulations and compared them with observations. The spatio-temporal variations of extreme precipitation were further analyzed in terms of intensity, frequency, and duration. The results indicated that the WRF model can appropriately reproduce the spatial distribution of extreme precipitation indices with acceptable biases. The performance is significantly better for intensity and frequency indices compared to duration indices. Except for PRCPTOT and R10mm, WRF accurately captures the interannual variations of extreme precipitation. Meanwhile, the results of the pre-whitening Mann-Kendall (PWMK) test suggested that WRF can identify significant increasing trends in extreme precipitation, particularly for R95p, R99p, and R50mm. This study provides valuable insights for extreme precipitation forecasting and warning in other mountainous regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696463PMC
http://dx.doi.org/10.1038/s41598-024-84076-xDOI Listing

Publication Analysis

Top Keywords

extreme precipitation
36
wrf model
12
precipitation
10
extreme
9
river basin
8
precipitation events
8
precipitation indices
8
variations extreme
8
intensity frequency
8
wrf
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!