Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Global warming has profound effects on precipitation patterns, leading to more frequent and extreme precipitation events over the world. These changes pose significant challenges to the sustainable development of socio-economic and ecological environments. This study evaluated the performance of the new generation of the mesoscale Weather Research and Forecasting (WRF) model in simulating long-term extreme precipitation events over the Minjiang River Basin (MRB) of China from 1981 to 2020. We calculated 12 extreme precipitation indices from the WRF simulations and compared them with observations. The spatio-temporal variations of extreme precipitation were further analyzed in terms of intensity, frequency, and duration. The results indicated that the WRF model can appropriately reproduce the spatial distribution of extreme precipitation indices with acceptable biases. The performance is significantly better for intensity and frequency indices compared to duration indices. Except for PRCPTOT and R10mm, WRF accurately captures the interannual variations of extreme precipitation. Meanwhile, the results of the pre-whitening Mann-Kendall (PWMK) test suggested that WRF can identify significant increasing trends in extreme precipitation, particularly for R95p, R99p, and R50mm. This study provides valuable insights for extreme precipitation forecasting and warning in other mountainous regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696463 | PMC |
http://dx.doi.org/10.1038/s41598-024-84076-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!