A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study on the simulation of bridge deformation in a mining subsidence area. | LitMetric

Study on the simulation of bridge deformation in a mining subsidence area.

Sci Rep

School of Geodesy and Geomatics, Wuhan University, Wuhan, 430079, China.

Published: January 2025

AI Article Synopsis

  • Bridges in mining areas experience deformations due to surface subsidence from underground mining, which can affect both the bridge structure and the foundation soil.
  • The study focuses on a bridge in the Fengfeng mining area, using a probabilistic integral method to predict subsidence and constructing a finite element model for more accurate simulations.
  • Collected monitoring data helps validate the simulation's accuracy, analyze discrepancies, and refine the model to predict potential bridge failure based on surface subsidence over time.

Article Abstract

Bridges in mining areas deform primarily because of surface subsidence caused by underground mining. Analysis of these deformations should consider the synergistic effects between the foundation soil and the bridge superstructure. The geology of mining areas, which is inherently complex, significantly effects the selection of soil mechanics parameters, potentially leading to errors in model calculations. This study focuses on the bridge in the Fengfeng mining area of Handan, Hebei, and uses the probabilistic integral method to predict subsidence at the bottom section below the surface over a specified period. A finite element model of the bridge and foundation soil is constructed, utilising these predicted subsidence contour lines as boundary conditions for simulating the surrounding surface subsidence. Additionally, monitoring data of surface and bridge subsidence from the same period are collected to validate the simulation accuracy, analyse error types and causes, and propose model improvements. After the feasibility of the improvement schemes is validated, the revised model is employed to predict the bridge failure trend. The model parameters can be adjusted based on surface subsidence monitoring data, and by integrating these adjustments with the predicted subsidence results at the bottom section during various mining stages, the bridge failure trend can be accurately predicted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697262PMC
http://dx.doi.org/10.1038/s41598-024-84220-7DOI Listing

Publication Analysis

Top Keywords

surface subsidence
12
subsidence
8
mining areas
8
foundation soil
8
subsidence bottom
8
predicted subsidence
8
monitoring data
8
bridge failure
8
failure trend
8
bridge
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!