A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SAILOR: perceptual anchoring for robotic cognitive architectures. | LitMetric

SAILOR: perceptual anchoring for robotic cognitive architectures.

Sci Rep

Robotics Group, Department of Mechanic Engineering, Computer and Aerospace Sciences, University of León, 24006, León, Spain.

Published: January 2025

Symbolic anchoring is an important topic in robotics, as it enables robots to obtain symbolic knowledge from the perceptual information acquired through their sensors and maintain the link between that knowledge and the sensory data. In cognitive-based robots, this process of transforming sub-symbolic data generated by sensors to obtain and maintain symbolic knowledge is still an open problem. To address this issue, this paper presents SAILOR, a framework for symbolic anchoring integrated into ROS 2. SAILOR aims to maintain the link between symbolic data and perceptual data in real robots over time. It provides a semantic world modeling approach using two deep learning-based sub-symbolic robotic skills: object recognition and matching function. The object recognition skill allows the robot to recognize and identify objects in its environment, while the matching function enables the robot to decide if new perceptual data corresponds to existing symbolic data. This paper describes the proposed method and the development of the framework, as well as its integration in MERLIN2 (a hybrid cognitive architecture fully functional in robots running ROS 2) and the validation of SAILOR using public datasets and a real-world scenario.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697306PMC
http://dx.doi.org/10.1038/s41598-024-84071-2DOI Listing

Publication Analysis

Top Keywords

symbolic anchoring
8
symbolic knowledge
8
sensors maintain
8
maintain link
8
symbolic data
8
perceptual data
8
object recognition
8
matching function
8
symbolic
6
data
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!