Peroxiredoxin 6 (PRDX6) is one of the Peroxiredoxin family members with only 1-Cys, using glutathione as the electron donor to reduce peroxides in cells. PRDX6 has been frequently studied and its expression was associated with poor prognosis in many tumors. However, the expression of PRDX6 in multiple myeloma (MM) and its relevance with MM remain unclear. In our study, we found that PRDX6 was overexpressed in MM patients. Its high expression was inversely correlated with prognosis but positively correlated with the levels of β2-microglobulin (B2M), lactate dehydrogenase (LDH), and International Staging System (ISS) stage of MM patients. Further, the deficiency of PRDX6 promoted MM cell lines (RPMI 8226, MM.1S, and U266) apoptosis significantly. Mechanically, PRDX6 serves as an anti-oxidative enzyme, and its deficiency led to over-accumulation of reactive oxygen species (ROS), resulting in oxidative stress, following the activation of MAPK signaling pathway, which manifested as phosphorylation of JNK and p38. Then, the expression of BAX and Bcl2 was imbalance, and the cascade cleavage of PARP and caspase 3 was increased, ultimately triggering cell apoptosis. In addition, oxidative stress decreased mitochondrial membrane potential (MMP), reduced gene expression levels of oxidative phosphorylation (OXPHOS), and increased in the density of mitochondrial crumpling, leading to mitochondrial structural abnormalities and dysfunction. Furthermore, PRDX6 deficiency combined with bortezomib induced a robust anti-tumor effect in MM cell lines. Finally, in vivo experiments also showed that the deficiency of PRDX6 inhibited tumor growth of tumor-bearing mice. Collectively, PRDX6 protects MM cells from oxidative damage and maintains mitochondrial homeostasis. And targeting PRDX6 is an attractive strategy to enhance the anti-tumor effect of bortezomib in MM.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-84021-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696808PMC

Publication Analysis

Top Keywords

prdx6
10
maintains mitochondrial
8
mitochondrial homeostasis
8
mapk signaling
8
signaling pathway
8
multiple myeloma
8
deficiency prdx6
8
cell lines
8
oxidative stress
8
mitochondrial
5

Similar Publications

Background: The emerging tools of protein-protein interactome network offer a platform to explore not only the molecular complexity of human diseases, but also to identify risk genes and drug targets. Integration of the genome, transcriptome, proteome, and the interactome networks are essential for such identification, including Alzheimer's disease (AD), Parkinson disease (PD), and Amyotrophic lateral sclerosis (ALS) METHOD: In this study, we performed multi-modal analyses of cross-species protein interactome networks and human brain functional genomics data to identify risk genes and drug targets for neurodegenerative diseases. We presented a multi-view topology-based deep learning framework to identify disease-associated genes for cross-species interactome (TAG-X).

View Article and Find Full Text PDF

Peroxiredoxin 6 (PRDX6) is one of the Peroxiredoxin family members with only 1-Cys, using glutathione as the electron donor to reduce peroxides in cells. PRDX6 has been frequently studied and its expression was associated with poor prognosis in many tumors. However, the expression of PRDX6 in multiple myeloma (MM) and its relevance with MM remain unclear.

View Article and Find Full Text PDF

Current antiepileptic drugs are ineffective in one-third of patients with epilepsy; however, identification of genes involved in epilepsy can enable a precision medicine approach. Here, it is demonstrated that downregulating D-2-hydroxyglutarate dehydrogenase (D2HGDH) enhances susceptibility to epilepsy. Furthermore, its potential involvement in the seizure network through synaptic function modulation is investigated.

View Article and Find Full Text PDF

Studies have shown the presence of residual amounts of the herbicide glyphosate in poultry feed, which leads to its bioaccumulation in the body. Recently, it has been established that exposure to low levels of glyphosate over a long period may have serious negative effects on poultry health. Moreover, combined exposure to several toxicants can potentially lead to additive and/or synergistic effects.

View Article and Find Full Text PDF

PRDX6 as an additional piece in the puzzle of selenoprotein synthesis.

Mol Cell

December 2024

Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany; TraceAge-DFG Research Unit of Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany. Electronic address:

Article Synopsis
  • Ito et al. and Chen et al. discover that peroxiredoxin 6 (PRDX6) is part of the system that produces selenoproteins.
  • This identification connects PRDX6 to how susceptible cancer cells are to a type of cell death called ferroptosis.
  • The findings highlight the potential role of PRDX6 in cancer biology and treatment strategies related to ferroptosis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!