Although chimeric antigen receptor (CAR) T cells are effective against B-lineage malignancies, post-CAR relapse is common, and efficacy in other tumors is limited. These challenges may be addressed through rational manipulations to control CAR T cell function. Here we examine the impact of cognate T cell antigen experience on subsequent CD8 CAR T cell activity. Prior antigen encounter resulted in superior effector function against leukemia expressing low target antigen density at the expense of reduced proliferative capacity and susceptibility to dysfunction at limiting CAR doses. Distinctive temporal transcriptomic and epigenetic profiles in naive-derived and memory-derived CAR T cells identified RUNX family transcription factors as potential targets to augment the function of naive-derived CD8 CAR T cells. RUNX2 overexpression enhanced antitumor efficacy of mouse CAR T cells, dependent on prior cell state, and heightened human CAR T cell functions. Our data demonstrate that prior antigen experience of CAR T cells determines functional attributes and amenability to transcription factor-mediated functional enhancement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695263PMC
http://dx.doi.org/10.1038/s41590-024-02034-1DOI Listing

Publication Analysis

Top Keywords

car cells
24
antigen experience
12
cd8 car
12
car cell
12
car
10
prior antigen
8
antigen
6
cells
6
cell
5
experience history
4

Similar Publications

In the past decades, Chimeric Antigen Receptor (CAR)-T cell therapy has achieved remarkable success, leading to the approval of six therapeutic products for haematological malignancies. Recently, the therapeutic potential of this therapy has also been demonstrated in non-tumoral diseases. Currently, the manufacturing process to produce clinical-grade CAR-T cells is complex, time-consuming, and highly expensive.

View Article and Find Full Text PDF

Breast cancer will overtake all other cancers in terms of diagnoses in 2024. Breast cancer counts highest among women in terms of cancer incidence and death rates. Innovative treatment approaches are desperately needed because treatment resistance brought on by current clinical drugs impedes therapeutic efficacy.

View Article and Find Full Text PDF

Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers.

View Article and Find Full Text PDF

CAR-T Cell Therapy: Pioneering Immunotherapy Paradigms in Cancer Treatment.

Curr Pharm Biotechnol

January 2025

Department of Pharmacology, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to-be University, Shirpur - 425405, India.

The world's one of the major causes of death are cancer. Cancer is still a complex disease over the years that needs to be cured. Traditional cytotoxic approaches, although they have been implemented for years for treating neoplastic diseases, yet are limited due to the intricacy and low efficiency of cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!