Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants. This experiment was conducted to study the effects of NaCl salinity stress (0, 100, and 200 mM), and foliar application of quantum dot-graphene oxide, nano-TiO, and CeO (zero and 2 g/l) on the growth and physiological responses of Capsicum annum L. The results revealed that the interaction effects of treatments significantly affected plant and fruit fresh weight, chlorophyll a, total soluble solids, phenolics, malondialdehyde, HO and proline content. Moreover, catalase activity and sodium, and phosphorus content were responded to the treatments. The highest fresh weight of plants and fruits, fruit diameter, and chlorophyll a content were recorded under no-salinity × quantum dot-graphene oxide foliar use. The highest data for total phenolics content was recorded at NaCl × quantum dot-graphene oxide. In contrast, the maximum flavonoids content belonged to NaCl × quantum dot-graphene oxide and NaCl × TiO. The experimental treatments independently affected the number of fruits, chlorophyll b, carotenoids, and vitamin C content, as well as K/Na ratio. The foliar treatment of quantum dot-graphene oxide nanoparticles improved the carotenoids and vitamin C content, stem diameter, and fruit number. The overall results disclosed that, when plants were exposed to high salinity levels; the foliar treatments were unable to effectively mitigate the negative impacts of salt stress on the plant, except for certain traits such as total phenolics, flavonoids, and TSS levels. However, under the low and mild salinity depression, the foliar treatments were enough capable to overcome the salinity defects.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-84706-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696048PMC

Publication Analysis

Top Keywords

quantum dot-graphene
24
dot-graphene oxide
24
salinity stress
12
growth physiological
8
physiological responses
8
responses capsicum
8
capsicum annum
8
oxide
8
oxide nanoparticles
8
foliar application
8

Similar Publications

Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.

View Article and Find Full Text PDF

Generation of disinfection byproducts by graphene quantum dot: Graphene nanostructures and water chemistry.

Chemosphere

December 2024

College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China. Electronic address:

Graphene quantum dot (GQD), as one of the smallest graphene nanomaterials (GNMs), has the potential to be widely used due to its excellent fluorescence properties, hydrophilicity, and good biocompatibility. GQD remaining in water will generate DBPs when entering the disinfection process, and whether the generation mechanism and influencing factors are similar to those of other GNMs has not been proven and thoroughly investigated. In this study, the total amount, effect, and mechanism of DBPs formation from GQD chlorination were investigated and compared with graphene oxide (GO) and graphene.

View Article and Find Full Text PDF

A fluorescence (FL)-based nanosensor has been devised for creatinine (CR) detection in human urine specimens. The proposed nanosensor utilized a nanocomposite (NC) of carbon dots (CDs) and graphene oxide (GO). The formation of CDs/GO NC reduced the CD FL emission (λ = 390 nm, λ = 461 nm) by ~ 75%.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on integrating PbS quantum dots with graphene to improve the optoelectronic properties of quantum-dot devices, utilizing graphene's high carrier mobility.
  • Researchers created heterostructures by combining p-type monolayer graphene and PbS QDs, then analyzed their electrical transport properties under various conditions to compare with pure graphene.
  • Results showed higher resistance and significant hole doping in QD/graphene samples, with mobility changes at different temperatures and enhanced conductivity under infrared light, indicating potential for advanced photodetector applications.
View Article and Find Full Text PDF

Colloidal quantum dots/graphene (QD/Gr) nanohybrids have been studied intensively for photodetection in a broadband spectrum including ultraviolet, visible, near-infrared, and shortwave infrared (UV-vis-NIR-SWIR). Since the optoelectronic process in the QD/Gr nanohybrid relies on the photogenerated charge carrier transfer from QDs to graphene, understanding the role of the QD-QD and QD-Gr interfaces is imperative to the QD/Gr nanohybrid photodetection. Herein, a systematic study is carried out to probe the effect of these interfaces on the noise, photoresponse, and specific detectivity in the UV-vis-NIR-SWIR spectrum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!