Multiomics analysis reveals the involvement of NET1 in tumour immune regulation and malignant progression.

Sci Rep

Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China.

Published: January 2025

Neuroepithelial cell transforming gene 1 (NET1) is a member of the Ras homologue family member A (RhoA) subfamily of guanine nucleotide exchange factors and a key protein involved in the activation of Rho guanosine triphosphatases, which act as regulators of cell proliferation, cytoskeletal organization, and cell movement and are crucial for cancer spread. Research has shown that NET1 can regulate the malignant biological functions of tumour cells, such as growth, invasion, and metastasis, and it is closely related to the progression of pancreatic cancer, gastric cancer, and liver cancer. However, the comprehensive role and mechanistic function of NET1 in other types of cancer remain largely unexplored. A deeper understanding of the role of NET1 may provide new insights into the molecular mechanisms of cancer progression and metastasis. This study aims to fill this knowledge gap and provide a more comprehensive understanding of the role of NET1 in cancer biology. The Cancer Genome Atlas and Genotype-Tissue Expression databases were utilized to analyse the differential expression of NET1 in normal and cancer tissues. The prognostic value of NET1 in cancer was evaluated through log-rank tests and Cox regression models. Further analysis was conducted to assess the relationships between NET1 expression and clinical features, as well as its diagnostic value. We investigated potential factors contributing to genetic alterations in NET1 to elucidate the role of NET1 in cancer progression. We also explored the relationships between NET1 and genes associated with epigenetic modifications, oncogenes, and tumour characteristics, such as RNA stemness scores (RNAss), DNA stemness scores (DNAss), the tumour mutation burden (TMB), and microsatellite instability (MSI). Additionally, we analysed the associations between NET1 expression and immune cell infiltration, immunoregulatory genes, and sensitivity to therapeutic drugs. We conducted gene set enrichment analysis to further investigate the signalling pathways that might be affected by changes in NET1. The prognostic value of NET1 in triple-negative breast cancer (TNBC) was further validated using real-world and Gene Expression Omnibus (GEO) data. Finally, through both in vivo and in vitro experiments, we confirmed that the overexpression of NET1 contributed to the malignant progression of TNBC cells, and we explored the potential mechanism by which NET1 regulates malignant biological behaviour through cellular experiments. Our study revealed a higher expression level of NET1 in 18 types of tumour tissues than in their corresponding normal tissues. Specifically, we observed high expression of NET1 in LIHC, LUSC, PAAD, and BRCA tumour tissues, which was associated with a poor prognosis. In terms of gene alterations, "amplification", "mutation", and "deep deletion" were identified as the main types of changes occurring in NET1. Among these, "amplification" was predominantly observed in LIHC, LUSC, PAAD, and BRCA. Furthermore, a significant positive correlation was found between copy number variations and the NET1 expression level in various tumours, including LIHC, LUSC, PAAD, and BRCA. We also discovered that NET1 expression was positively correlated with the expression of genes related to epigenetic modification in almost all types of cancer and was related to the expression levels of numerous oncogenes. In certain tumours, a significant positive correlation was noted between the expression of NET1 and TMB, MSI, DNAss, and RNAss. Intriguingly, in most tumours, NET1 expression was strongly negatively correlated with the levels of infiltrating natural killer cells and M1 macrophages. Moreover, NET1 expression was significantly positively correlated with the expression of immune genes in nearly all types of cancer. An analysis of single-cell data revealed that NET1 was expressed primarily in malignant tumour cells in most tumours, with little to no expression in immune cells. Additionally, the expression level of NET1 was associated with sensitivity to various therapeutic drugs. Data from GEO and real-world studies indicated high expression of NET1 in TNBC tissues, which was correlated with a poor prognosis. Cellular experiments indicated that NET1 could regulate the proliferation, invasion, cell cycle, and apoptosis of TNBC cells. Furthermore, NET1 may mediate the malignant proliferation of tumour cells through the AKT signalling pathway. NET1 can serve as a potential prognostic marker for LIHC, LUSC, PAAD, and BRCA tumours. Real-world data further suggest that NET1 can also serve as a prognostic indicator for TNBC. High expression of NET1 may contribute to the malignant proliferation of TNBC cells, potentially through the AKT signalling pathway. Moreover, NET1 may contribute to the formation of an immunosuppressive microenvironment that can promote tumour progression. Therefore, targeting NET1 may represents a promising approach for inhibiting tumour progression.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-83714-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695589PMC

Publication Analysis

Top Keywords

net1
35
net1 expression
24
expression net1
20
expression
19
lihc lusc
16
lusc paad
16
paad brca
16
cancer
14
tumour cells
12
types cancer
12

Similar Publications

Multiomics analysis reveals the involvement of NET1 in tumour immune regulation and malignant progression.

Sci Rep

January 2025

Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China.

Neuroepithelial cell transforming gene 1 (NET1) is a member of the Ras homologue family member A (RhoA) subfamily of guanine nucleotide exchange factors and a key protein involved in the activation of Rho guanosine triphosphatases, which act as regulators of cell proliferation, cytoskeletal organization, and cell movement and are crucial for cancer spread. Research has shown that NET1 can regulate the malignant biological functions of tumour cells, such as growth, invasion, and metastasis, and it is closely related to the progression of pancreatic cancer, gastric cancer, and liver cancer. However, the comprehensive role and mechanistic function of NET1 in other types of cancer remain largely unexplored.

View Article and Find Full Text PDF

Doublecortin regulates the mitochondrial-dependent apoptosis in glioma via Rho-A/Net-1/p38-MAPK signaling.

Mol Med

December 2024

Department of Neurobiology and Anatomy, Key Laboratory of Neurobiology, Xuzhou Medical University, 209, Tongshan Road, Xuzhou, 221004, China.

Doublecortin (DCX) is a microtubule-associated protein known to be a key regulator of neuronal migration and differentiation during brain development. However, the role of DCX, particularly in regulating the survival and growth of glioma cells, remains unclear. In this study, we utilized CRISPR/Cas9 technology to knock down DCX in the human glioma cell line (U251).

View Article and Find Full Text PDF

Background: High incidence and mortality rates underscore lung cancer as a significant global health issue. Understanding the molecular mechanisms driving its progression is crucial for developing effective treatments. This study explores a potential molecular regulator that may contribute to the progression of non-small cell lung cancer (NSCLC) by utilizing bioinformatics analyses and laboratory experiments, aiming to provide insights that could inform future therapeutic strategies.

View Article and Find Full Text PDF

Control of Epithelial Tissue Organization by mRNA Localization.

bioRxiv

December 2024

Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.

Article Synopsis
  • mRNA is commonly localized in specific areas of mammalian cells, particularly at the dermal-epidermal junction (DEJ) in skin tissue, which is important for tissue health.
  • Disrupting this localization in mice leads to changes in DEJ structure and connections between skin cells and the underlying matrix, impacting overall tissue homeostasis.
  • This research highlights how localized mRNA influences the distribution of Net1 protein and RhoA activity, revealing a crucial link between mRNA positioning and epithelial tissue organization.
View Article and Find Full Text PDF

Conditional Overexpression of Net1 Enhances the Trans-Differentiation of Lgr5 Progenitors into Hair Cells in the Neonatal Mouse Cochlea.

Cell Prolif

December 2024

State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.

Sensorineural hearing loss is mainly caused by damage to hair cells (HC), which cannot be regenerated spontaneously in adult mammals once damaged. Cochlear Lgr5 progenitors are characterised by HC regeneration capacity in neonatal mice, and we previously screened several new genes that might induce HC regeneration from Lgr5 progenitors. Net1, a guanine nucleotide exchange factor, is one of the screened new genes and is particularly active in cancer cells and is involved in cell proliferation and differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!