Marine climate significantly influences the spatial morphology of coastal village's streets. However, research on coastal villages lacks spatial parameterization analysis that can cope with the complex climatic environment. Focusing on the coastal village's street in Fuzhou City, China, this paper studies the relationship between street space morphology and the impact of extreme heat and wind conditions. Thermal comfort degree and the average wind speed are main optimization objectives. By using parameterization techniques to establish a dynamic model and conducting multi-objective optimization driven by genetic algorithms, the degree of influence of morphological indicators and climate indicators is revealed. The conclusions of the study indicate that the morphological indicators of the main space have a more significant impact on the climatic environment than the morphological indicators of the interfaces on either side of the street. The influence of thermal comfort indicators on the street space within the climate environment is greater than that of wind speed indicators. This study concludes by proposing a ranking of key morphological indicators along with their optimal intervals for coastal villages adapted to the marine climate. The key morphological indicators, listed in order of importance, include appropriate street widths (2.3-4.3 m), eave height for single-storey buildings (2.0-4.6 m), eave height for double-storey buildings (5.4-7.7 m), eave depth (0.8-1.1 m for brick-timber dwellings and 0.3-0.6 m for masonry dwellings), roof slope (20-28°), entrance space depth (0.8-1.3 m), balcony overhang depth (0.6-0.7 m), colonnade depth (1.5-2.4 m), street orientation (NE-SW) and building depth (3.2-5.0 m). This study provides an empirical reference for climate-adapted village design and renewal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-84513-x | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696089 | PMC |
Sci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
Exposure to vanadium (V) occurs through the ingestion of contaminated water, polluted soil, V-containing foods and medications, and the toxicity and absorption during the small intestine phase after oral ingestion play crucial roles in the ultimate health hazards posed by V. In this study, the human colon adenocarcinoma (Caco-2) cells were selected as an intestinal absorption model to investigate the uptake and cytotoxicity of vanadyl sulfate (VOSO) and sodium orthovanadate (NaVO). Our results confirmed the cytotoxic effects of V(IV) and V(V) and revealed a greater toxicity of V(IV) than V(V) towards Caco-2 cells.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:
In this study, the role of a transition metal complex in improving hydrolysis efficiency during nanocellulose production was analysed. Cellulose nanocrystals (CNCs) were extracted from date seeds by incorporating a copper metal complex during HCl hydrolysis. In contrast to traditional HCl hydrolysis at moderate conditions, which yielded only microcrystalline cellulose (MCC), this approach resulted in the extraction of CNCs with a 10 % improved yield compared to MCC.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Molecular Anatomy, School of Medicine University of the Ryukyus, Uehara, 207, Nishihara, Okinawa 903-0213, Japan.
The subiculum is a main output part of the hippocampal formation and important for learning and memory. According to connection studies, the distal and proximal regions of the subiculum project to the brain regions related to the spatial and emotional memories, respectively. Our previous morphological studies indicated that the ventral subiculum (vSub) consists of two regions, the distal subiculum (Sub1) and the proximal subiculum (Sub2), while the dorsal subiculum (dSub) seemed to comprise only one region (Sub1).
View Article and Find Full Text PDFClin Neurol Neurosurg
December 2024
Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India. Electronic address:
Background: The complex structure and function of the cerebrum make it a key focus in neuroscience research. It develops from telencephalic vesicles through processes such as cell growth, division, and migration from the neuroepithelium's ventricular matrix, forming the six-layered isocortex or neocortex. Multipotent neuroepithelial cells give rise to both neuronal and glial precursors, which populate the cerebral cortex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!