A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CoGraphNet for enhanced text classification using word-sentence heterogeneous graph representations and improved interpretability. | LitMetric

Text Graph Representation Learning through Graph Neural Networks (TG-GNN) is a powerful approach in natural language processing and information retrieval. However, it faces challenges in computational complexity and interpretability. In this work, we propose CoGraphNet, a novel graph-based model for text classification, addressing key issues. To overcome information loss, we construct separate heterogeneous graphs for words and sentences, capturing multi-tiered contextual information. We enhance interpretability by incorporating positional bias weights, improving model clarity. CoGraphNet provides precise analysis, highlighting important words or sentences. We achieve enhanced contextual comprehension and accuracy through novel graph structures and the SwiGLU activation function. Experiments on Ohsumed, MR, R52, and 20NG datasets confirm CoGraphNet's effectiveness in complex classification tasks, demonstrating its superiority.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696360PMC
http://dx.doi.org/10.1038/s41598-024-83535-9DOI Listing

Publication Analysis

Top Keywords

text classification
8
cographnet enhanced
4
enhanced text
4
classification word-sentence
4
word-sentence heterogeneous
4
graph
4
heterogeneous graph
4
graph representations
4
representations improved
4
improved interpretability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!