Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Graph neural networks (GNNs) have emerged as a prominent approach for capturing graph topology and modeling vertex-to-vertex relationships. They have been widely used in pattern recognition tasks including node and graph label prediction. However, when dealing with graphs from non-Euclidean domains, the relationships, and interdependencies between objects become more complex. Existing GNNs face limitations in handling a large number of model parameters in such complex graphs. To address this, we propose the integration of Geometric Algebra into graph neural networks, enabling the generalization of GNNs within the geometric space to learn geometric embeddings for nodes and graphs. Our proposed Graph Geometric Algebra Network (GGAN) enhances correlations among nodes by leveraging relations within the Geometric Algebra space. This approach reduces model complexity and improves the learning of graph representations. Through extensive experiments on various benchmark datasets, we demonstrate that our models, utilizing the properties of Geometric Algebra operations, outperform state-of-the-art methods in graph classification and semi-supervised node classification tasks. Our theoretical findings are empirically validated, confirming that our model achieves state-of-the-art performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696881 | PMC |
http://dx.doi.org/10.1038/s41598-024-84483-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!