Milling chatter, a form of self-excited vibration, can cause significant damage in machining and manufacturing processes. By selecting appropriate milling parameters, milling chatter can be effectively mitigated without sacrificing milling efficiency. Within the framework of the semi-discretization scheme, this paper introduces the Newton-Simpson-based predictor-corrector methods to compute milling stability lobe diagrams. Firstly, the milling delay differential equation is transformed into the state space form, and then the time-delayed term and the periodic coefficient matrix of the state space equation are treated as an operator. Secondly, the tooth passing period is divided into the free vibration period and the forced vibration period. During the forced vibration period, the time-delayed term and the periodic coefficient matrix are approximated as a holistic operator over two different time intervals using the Newton interpolation polynomials and the Simpson formula, respectively. Finally, the state transition matrix is constructed based on the predictor-corrector scheme, and the stability lobe diagrams are obtained by applying Floquet theory. The convergence rate and calculation accuracy of the proposed methods are compared with those of the existing predictor-corrector methods, semi-discretization, and full-discretization methods. The results show that the proposed Newton-Simpson-based predictor-corrector methods have a faster convergence rate. For the local stability lobe diagrams, the arithmetic mean of relative error (AMRE), mean squared error (MSE), and the sum of absolute error (SAE) of the proposed methods are in the ranges of 0.003 to 0.004, 2.66 × 10 to 6.40 × 10, and 6.41 × 10 to 9.34 × 10, respectively, which are much lower than those of the existing methods, indicating that the proposed methods have higher calculation accuracy than the existing methods. The current work has a broad application prospect in the field of milling stability prediction for precision machining and the selection of chatter-free milling parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-84329-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696859PMC

Publication Analysis

Top Keywords

predictor-corrector methods
16
newton-simpson-based predictor-corrector
12
milling chatter
12
stability lobe
12
lobe diagrams
12
vibration period
12
proposed methods
12
methods
10
milling
9
stability prediction
8

Similar Publications

Milling chatter, a form of self-excited vibration, can cause significant damage in machining and manufacturing processes. By selecting appropriate milling parameters, milling chatter can be effectively mitigated without sacrificing milling efficiency. Within the framework of the semi-discretization scheme, this paper introduces the Newton-Simpson-based predictor-corrector methods to compute milling stability lobe diagrams.

View Article and Find Full Text PDF

A fractional order model for the transmission dynamics of shigellosis.

Heliyon

May 2024

Department of Mathematics and Statistics, University of Dodoma, Postal address: Box 338, Dodoma, Tanzania.

, a highly contagious bacterial infection causing diarrhea, fever, and abdominal pain, necessitates a deep understanding of its transmission dynamics to devise effective control measures. Our study takes a novel approach, employing a fractional order framework to explore the influence of memory and control measures on transmission dynamics, thereby making a unique contribution to the field. The model is presented as a system of Caputo fractional differential equations capturing time constant controls.

View Article and Find Full Text PDF

An efficient trigonometrical-fitted two-derivative multistep collocation (TF-TDMC) method using Legendre polynomials up to order five as the basis functions, has been developed for solving second-order ordinary differential equations with oscillatory solution effectively. Interpolation method of approximated power series and collocation technique of its second and third derivative are implemented in the construction of the methods. Two-derivative multistep collocation methods are developed in predictor and corrector form with varying collocation and interpolation points.

View Article and Find Full Text PDF

We introduce Astrophysical Hybrid-Kinetic simulations with the flash code ([Formula: see text]) - a new Hybrid particle-in-cell (PIC) code developed within the framework of the multiphysics code flash. The new code uses a second-order accurate Boris integrator and a predictor-predictor-corrector algorithm for advancing the Hybrid-kinetic equations, using the constraint transport method to ensure that magnetic fields are divergence-free. The code supports various interpolation schemes between the particles and grid cells, with post-interpolation smoothing to reduce finite particle noise.

View Article and Find Full Text PDF

Fractional calculus integration for improved ECG modeling: A McSharry model expansion.

Med Eng Phys

October 2024

Laboratoire PRISME, Université d'Orléans, 12 rue de Blois, BP 6744, 45067, Orléans, France. Electronic address:

This study introduces a new method for modeling electrocardiogram (ECG) waveforms using Fractional Differential Equations (FDEs). By incorporating fractional calculus into the well-established McSharry model, the proposed approach achieves improved representation and high precision for a wide range of ECG waveforms. The research focuses on the impact of integrating fractional derivatives into Integer Differential Equation (IDE) models, enhancing the fidelity of ECG signal modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!