The increasing environmental issues and growing interest in utilizing natural resources have led to heightened attention towards renewable energy sources. This has spurred the exploration of sustainable approaches, including ecosystem restoration. The soil's ability to retain moisture increases with the rise in organic carbon content. As a result of this study, a unique product was developed-microcapsules based on carbonized rice husk and metallurgical slag. Conducted field trials, agrochemical analysis, elemental analysis, and X-ray diffraction analysis allowed for the assessment of the effectiveness of this additive. The research findings confirmed the positive impact of the mineralogical additive on soil properties, opening up prospects for its utilization in agriculture and environmental management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696012PMC
http://dx.doi.org/10.1038/s41598-024-73329-4DOI Listing

Publication Analysis

Top Keywords

rice husk
8
husk metallurgical
8
development application
4
application microcapsules
4
microcapsules based
4
based rice
4
metallurgical sludge
4
sludge improve
4
improve soil
4
soil fertility
4

Similar Publications

This work aimed to extract silica from combination of rice husk (RH and Rice straw (RS) by optimizing the ash digesting process parameters with the aid of response surface methodology (RSM). The effects of three independent ash digestion process factors like sodium hydroxide concentration (1-3 M), temperature (60-120 °C) and time (1-3 h), for silica production from the mixture of rice husk (RH) and rice straw (RS) were studied. A quadratic model was used to correlate the interaction effects of the independent variables for maximum silica production at the optimum process parameters by employing central composite design (CCD) with RSM.

View Article and Find Full Text PDF

The increasing environmental issues and growing interest in utilizing natural resources have led to heightened attention towards renewable energy sources. This has spurred the exploration of sustainable approaches, including ecosystem restoration. The soil's ability to retain moisture increases with the rise in organic carbon content.

View Article and Find Full Text PDF

There are many problems in the direct combustion of biomass, such as low combustion efficiency and easy slagging. In this paper, rice husk (RH) was taken as the research object, and the effects of different washing pretreatment conditions (washing time (WTI), washing temperature (WTE), and particle size) on the combustion characteristics and ash formation characteristics were discussed. The results show that the combustion characteristics of RH were significantly coupling-affected by the WTE and WTI, and the comprehensive characteristics of volatile release were significantly coupling-affected by the particle size and WTI.

View Article and Find Full Text PDF

The purpose of this study is to examine how co-pyrolysis of low-density polyethylene (LDPE) and rice husk is impacted by LDPE. It also looks into the physicochemical characteristics, thermal behavior, and kinetic parameters of these materials. To understand the thermal behavior through TGA, rice husk and LDPE blends in the ratios of LDPE: RH (50:50), LDPE: RH (25:75), and LDPE: RH (75:25) were prepared and tested.

View Article and Find Full Text PDF

To explore the effects of the components in the raw materials and by-products of co-pyrolysis on the physicochemical properties of biochar, rice husk (RH, which has a high percentage of lignin and a low content of N) and sawdust (SD, which has a high percentage of both cellulose and N) were used as typical raw materials to prepare co-pyrolysis biochar. The benzene vapor adsorption performance of the obtained biochar was then tested on a fixed-bed device. At the same time, the by-product components generated during pyrolysis were analyzed using thermogravimetric (TG), scanning electron microscopy (SEM), and gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!