Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
X-ray crystallography is one of the leading tools to analyze the 3-D structure, and therefore, function of proteins and other biological macromolecules. Traditional methods of mounting individual crystals for X-ray diffraction analysis can be tedious and result in damage to fragile protein crystals. Furthermore, the advent of multi-crystal and serial crystallography methods explicitly require the mounting of larger numbers of crystals. To address this need, we have developed a device that facilitates the straightforward mounting of protein crystals for diffraction analysis, and that can be easily manufactured at scale. Inspired by grid-style devices that have been reported in the literature, we have developed an X-ray compatible microfluidic device that can be used to trap protein crystals in an array configuration, while also providing excellent optical transparency, a low X-ray background, and compatibility with the robotic sample handling and environmental controls used at synchrotron macromolecular crystallography beamlines. At the Stanford Synchrotron Radiation Lightsource (SSRL), these capabilities allow for fully remote-access data collection at controlled humidity conditions. Furthermore, we have demonstrated continuous manufacturing of these devices via roll-to-roll fabrication to enable cost-effective and efficient large-scale production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696357 | PMC |
http://dx.doi.org/10.1038/s41598-024-83341-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!