Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The systems which influence the display of sniffing are unclear. Here, we report that dopamine release into the ventral striatum in mice is coupled with bouts of sniffing and that stimulation of dopaminergic terminals in these regions drives increases in respiratory rate to initiate sniffing whereas inhibition of these terminals reduces respiratory rate. Both the firing of individual neurons and the activity of post-synaptic D1 and D2 dopamine receptor-expressing neurons are coupled with sniffing and local antagonism of D1 and D2 receptors squelches sniffing. Together, these results support a model whereby sniffing can be initiated by dopamine's actions upon ventral striatum neurons. The nature of sniffing being integral to both olfaction and motivated behaviors implicates this circuit in a wide array of functions.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55644-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696867PMC

Publication Analysis

Top Keywords

ventral striatum
12
sniffing
11
striatum neurons
8
respiratory rate
8
dopaminergic signaling
4
signaling ventral
4
neurons
4
neurons initiates
4
initiates sniffing
4
sniffing behavior
4

Similar Publications

Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The systems which influence the display of sniffing are unclear.

View Article and Find Full Text PDF

Protein/protein interactions (PPI) play crucial roles in neuronal functions. Yet, their potential as drug targets for brain disorders remains underexplored. The fibroblast growth factor 14 (FGF14)/voltage-gated Na channel 1.

View Article and Find Full Text PDF

The nucleus accumbens (NAc) is a key brain region for motivated behaviors, yet how distinct neuronal populations encode appetitive or aversive stimuli remains undetermined. Using microendoscopic calcium imaging in mice, we tracked NAc shell D1- or D2-medium spiny neurons' (MSNs) activity during exposure to stimuli of opposing valence and associative learning. Despite drift in individual neurons' coding, both D1- and D2-population activity was sufficient to discriminate opposing valence unconditioned stimuli, but not predictive cues.

View Article and Find Full Text PDF

Infradian mood and sleep-wake rhythms with periods of 48 hours and beyond have been observed in patients with bipolar disorder (BD), which even persist in the absence of exogenous timing cues, indicating an endogenous origin. Here, we show that mice exposed to methamphetamine in drinking water develop infradian locomotor rhythms with periods of 48 hours and beyond which extend to sleep length and manic state-associated behaviors in support of a model for cycling in BD. The cycling capacity is abrogated upon genetic disruption of dopamine (DA) production in DA neurons of the ventral tegmental area (VTA) or ablation of nucleus accumbens projecting DA neurons.

View Article and Find Full Text PDF

A Neural Circuit From Paraventricular Nucleus of the Thalamus to the Nucleus Accumbens Mediates Inflammatory Pain in Mice.

Brain Behav

January 2025

Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China.

Article Synopsis
  • Inflammation-related pain alters pain sensitivity in mice, evidenced by reduced paw withdrawal thresholds and latencies in CFA-induced pain models.
  • Research highlights elevated c-Fos protein expression in the paraventricular nucleus of the thalamus (PVT), indicating neuron activation due to pain stimuli.
  • The study utilized optogenetics to modulate the PVT-NAc neural circuit, showing its significant role in how inflammatory pain is experienced and managed.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!