Photosensitization has a wide range of applications in vastly distant fields. Three key components must be present at the same time to trigger the related photodynamic effect: light, the photosensitizer (PS) and oxygen. Irradiating the sensitizer leads to the formation of reactive oxygen species (ROS). Since PSs are accumulated preferably in lipid membranes, the study of photoinduced damage to membrane lipids can greatly increase our understanding of the effect of ROS on membranes in pathological as well as therapeutic conditions. We aimed to characterize the topographical and nanomechanical changes in supported lipid bilayers (SLBs) evoked by light-induced ROS formation. SLBs were prepared on mica surfaces by deposition of liposomes containing unsaturated lipid components. Topographical changes of SLBs were imaged by atomic force microscopy (AFM), and ROS-induced nanomechanical alterations of the membranes were assessed by AFM force measurements. To shed light on chemical alterations of the membrane constituents, infrared spectra were recorded. In the AFM images of porphyrin-containing membranes nanoscopic, bilayer-spanning holes were detected after irradiation. The measured rupture forces increased as a result of irradiation. These phenomena did not occur in membranes lacking unsaturated lipid components, emphasizing their role in ROS-mediated disruption confirmed by infrared spectroscopy results.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-83758-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696533PMC

Publication Analysis

Top Keywords

nanomechanical alterations
8
lipid membranes
8
formation reactive
8
reactive oxygen
8
oxygen species
8
unsaturated lipid
8
lipid components
8
membranes
6
lipid
5
nanostructural nanomechanical
4

Similar Publications

Photosensitization has a wide range of applications in vastly distant fields. Three key components must be present at the same time to trigger the related photodynamic effect: light, the photosensitizer (PS) and oxygen. Irradiating the sensitizer leads to the formation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

There is a growing interest in the development of methods for the detection of nanoparticle (NP) toxicity to living organisms based on the analysis of relevant multidimensional data sets. In particular the detection of preliminary signs of NPs toxicity effects would benefit from the selection of data featuring NPs-induced alterations of biological barriers. Accordingly, we present an original Topological Data Analysis (TDA) of the nanomechanical properties of Escherichia coli cell surface, evaluated by multiparametric Atomic Force Microscopy (AFM) after exposure of the cells to increasing concentrations of titanium dioxide nanoparticles (TiONPs).

View Article and Find Full Text PDF

Maltodextrins are extensively used in the food industry to shape the physicochemical properties of food products. This multiscale study investigates three different Dextrose Equivalent (DE) maltodextrins as model matrices to elucidate the relationship between techno-functional behaviors and single particle surface properties. It was evidenced that environmental variations and glass transition influence single particle properties, significantly impacting the powder bulk behavior.

View Article and Find Full Text PDF

Evolution of the highly successful and multidrug resistant clone ST111 in Pseudomonas aeruginosa involves serotype switching from O-antigen O4 to O12. How expression of a different O-antigen serotype alters pathogen physiology to enable global dissemination of this high-risk clone-type is not understood. Here, we engineered isogenic laboratory and clinical P.

View Article and Find Full Text PDF

Atomic force microscopy reveals the influence of substrate collagen concentration and TGF-β on lung fibroblast mechanics.

Micron

February 2025

Cancer Mechanobiology and Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus, Cyprus; Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus. Electronic address:

Understanding how extracellular matrix (ECM) stiffness and biochemical factors such as TGF-β affect cell behaviour is critical for elucidating mechanisms underlying several pathologic conditions such as tissue fibrosis and cancer metastasis. This study investigates the effects of varying collagen substrate concentration and consequently varying stiffness conditions along with TGF-β treatment on the morphology, nanomechanical properties, and gene expression of normal human lung fibroblasts (NHLF). Our results reveal that increased substrate stiffness leads to more elongated cell morphology, decreased cellular stiffness, and significant alterations in gene expression related to cytoskeletal organization and myofibroblast activation genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!