A noncanonical role of roX RNAs in autosomal epigenetic repression.

Nat Commun

Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Published: January 2025

Long noncoding RNAs known as roX (RNA on the X) are crucial for male development in Drosophila, as their loss leads to male lethality from the late larval stages. While roX RNAs are recognized for their role in sex-chromosome dosage compensation, ensuring balanced expression of X-linked genes in both sexes, their potential influence on autosomal gene regulation remains unexplored. Here, using an integrative multi-omics approach, we show that roX RNAs not only govern the X chromosome but also target genes on autosomes that lack male-specific lethal (MSL) complex occupancy, together with Polycomb repressive complexes (PRCs). We observed that roX RNAs colocalize with MSL proteins on the X chromosome and PRC components on autosomes. Intriguingly, loss of roX function reduces X-chromosomal H4K16ac levels and autosomal H3K27me3 levels. Correspondingly, X-linked genes display reduced expression, whereas many autosomal genes exhibit elevated expression upon roX loss. Our findings propose a dual role for roX RNAs: activators of X-linked genes and repressors of autosomal genes, achieved through interactions with MSL and PRC complexes, respectively. This study uncovers the unconventional epigenetic repressive function of roX RNAs with PRC interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55711-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696496PMC

Publication Analysis

Top Keywords

rox rnas
24
x-linked genes
12
rox
9
role rox
8
autosomal genes
8
rnas
7
genes
6
autosomal
5
noncanonical role
4
rnas autosomal
4

Similar Publications

A noncanonical role of roX RNAs in autosomal epigenetic repression.

Nat Commun

January 2025

Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Long noncoding RNAs known as roX (RNA on the X) are crucial for male development in Drosophila, as their loss leads to male lethality from the late larval stages. While roX RNAs are recognized for their role in sex-chromosome dosage compensation, ensuring balanced expression of X-linked genes in both sexes, their potential influence on autosomal gene regulation remains unexplored. Here, using an integrative multi-omics approach, we show that roX RNAs not only govern the X chromosome but also target genes on autosomes that lack male-specific lethal (MSL) complex occupancy, together with Polycomb repressive complexes (PRCs).

View Article and Find Full Text PDF

N-terminus of MSL1 is critical for dosage compensation.

Elife

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation.

The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity 'entry' sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a very common cancer worldwide. CRC is characterized by some changes in the expression of oncogenic and tumor suppressor genes. These changes are associated with dysregulation of non-coding RNAs, including long non-coding RNAs (lncRNAs).

View Article and Find Full Text PDF

A dual-signal biosensor based on surface-enhanced Raman spectroscopy for high-sensitivity quantitative detection and imaging of circRNA in living cells.

Biosens Bioelectron

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China; Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Institute for Photonics Technology, Quanzhou Normal University, Quanzhou, 362000, PR China. Electronic address:

Circular RNAs (circRNAs) are non-coding RNAs that play key roles in the development and progression of cancer through various mechanisms of action, making them promising biomarkers for cancer diagnosis, prognosis, and treatment. In the present study, a biosensor based on surface-enhanced Raman spectroscopy (SERS) was developed for rapid, simple, and sensitive quantitative detection of intracellular circRNAs for the first time. A dual-signal SERS nanoprobe with a 4MBN and ROX signal molecule was fabricated, and the ROX signal intensity was used to determine the concentration of target circSATB2.

View Article and Find Full Text PDF

Background: Breast cancer is considered one of the leading causes of mortality in the world. Cancer incidence and consequently, drug consumption can strongly influence gene expressions at the transcriptome level. Therefore, the assessment of the candidate biomarkers' gene expression can accelerate the diagnosis process and increase the chance of treatment and remission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!