Superbugs in groundwater are posing severe health risks through waterborne pathways. An emerging approach for green disinfection lies at photocatalysis, which levers the locally generated superoxide radical (·O) for neutralization. However, the spin-forbidden feature of O hinders the photocatalytic generation of active ·O, and thus greatly limited the disinfection efficiency, especially for real groundwater with a low dissolved oxygen (DO) concentration. Herein, we report a class of strained MoBT MBene (MB) with enhanced adsorption/activation of molecular O for photocatalytic disinfection, and find the strain induced spin polarization of InS/MoBT (IS/MB) can facilitate the spin-orbit hybridization of Mo sites and O to overcome the spin-forbidden of O, which results in a 16.59-fold increase in ·O photocatalytic production in low DO condition (2.46 mg L). In particular, we demonstrate an InS/MoBT (50 mg)-based continuous-flow-disinfection system stably operates over 62 h and collects 37.2 L bacteria-free groundwater, which represents state-of-the-art photodisinfection materials for groundwater disinfection. Most importantly, the disinfection capacity of the continuous-flow-disinfection system is 25 times higher than that of commercial sodium hypochlorite (NaOCl), suggesting the practical potential for groundwater purification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-024-55626-8 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696085 | PMC |
Sci Rep
January 2025
Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo, Brazil.
Seventeen electronic states of the dication VH were characterized by the SA-CASSCF/icMRCI methodology using very extended basis sets; 11 were described for the first time. Potential energy curves were constructed and the associated spectroscopic parameters evaluated. Triplet and quintet states correlating with the V + H channel are thermodynamic stable.
View Article and Find Full Text PDFSci Adv
January 2025
Institute of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland.
Dynamic nuclear polarization (DNP) and emerging quantum technologies rely on the spin transfer in electron-nuclear hybrid quantum systems. Spin transfers might be suppressed by larger couplings, e.g.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
Two-dimensional (2D) materials that exhibit spontaneous magnetization, polarization, or strain (referred to as ferroics) have the potential to revolutionize nanotechnology by enhancing the multifunctionality of nanoscale devices. However, multiferroic order is difficult to achieve, requiring complicated coupling between electron and spin degrees of freedom. We propose a universal method to engineer multiferroics from van der Waals magnets by taking advantage of the fact that changing the stacking between 2D layers can break inversion symmetry, resulting in ferroelectricity as well as magnetoelectric coupling.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Cologne, Germany.
We report spin-polarized scanning tunneling microscopy measurements of an Anderson impurity system in MoS_{2} mirror-twin boundaries, where both the quantum-confined impurity state and the Kondo resonance resulting from the interaction with the substrate are accessible. Using a spin-polarized tip, we observe magnetic-field-induced changes in the peak heights of the Anderson impurity states as well as in the magnetic-field-split Kondo resonance. Quantitative comparison with numerical renormalization group calculations provides evidence of the notable spin polarization of the spin-resolved impurity spectral function under the influence of a magnetic field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!