Myocardial ischemia/reperfusion injury (MIRI) is a serious clinical complication that is caused by reperfusion therapy following myocardial infarction (MI). Mitochondria-related genes (Mito-RGs) play important roles in multiple diseases. However, the role of mitochondria-related genes in MIRI remains largely unknown. The GSE67308 dataset from the GEO database was utilized to identify MIRI-related gene modules through WGCNA. Meanwhile, differential expression analysis was conducted to identify differentially expressed genes (DEGs) in the GSE61592 dataset. Next, candidate Mito-RGs related to MIRI were screened by Venn analysis. Thereafter, a myocardial hypoxia/reperfusion (H/R) H9C2 cell model and a mouse ischemia/reperfusion (I/R) model were established to verify the expression level of glycine decarboxylase (Gldc) in MIRI in vitro and in vivo. Based on data from the GEO database, Gldc levels were notably upregulated in murine MIRI samples, compared to the control group. RT-qPCR and western blot confirmed that Gldc levels were obviously elevated in the heart of I/R mice and H/R-exposed cardiomyocytes. Moreover, the deficiency of Gldc notably increased the viability and reduced the apoptosis and inflammatory responses in H9C2 cells exposed to H/R. Meanwhile, Gldc downregulation significantly reduced p-NF-κB p65, Bax and cleaved caspase 3 levels and elevated p-Akt and Bcl-2 levels in H9C2 cells exposed to H/R. The ROC curve analysis further demonstrated that Gldc gene exhibited good diagnostic value for MIRI. Collectively, Gldc deficiency could attenuate H/R injury in cardiomyocytes in vitro through activating Akt and inactivating NF-κB signalings. These data suggested that GLDC may serve as both a diagnostic and therapeutic target for MIRI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696683 | PMC |
http://dx.doi.org/10.1038/s41598-024-79445-5 | DOI Listing |
Mol Aspects Med
January 2025
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan; Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan. Electronic address:
Microplastics (MPs) are known as substantial environmental and health threats because of their pervasive existence and potential function in human diseases. This study is the first research in which a comprehensive analysis of various impacts of MPs on cancer cells is performed through pharmacological and in silico approaches. Moreover, our results demonstrate that MPs have both promotive and suppressive impacts on cancer cells, changing some of the important features of these kinds of cells including cellular viability, migration, metastasis, and apoptosis.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, China.
Subarachnoid hemorrhage (SAH) is a specific type of stroke. Dihydroquercetin (DHQ), a flavonoid, is known for its various pharmacological properties. This study aimed to explore the roles and mechanisms of DHQ in influencing the progression of SAH.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:
Neurogenic microRNAs 9/9 and 124 (miR-9/9-124) drive the direct reprogramming of human fibroblasts into neurons with the initiation of the fate erasure of fibroblasts. However, whether the miR-9/9-124 fate erasure logic extends to the neuronal conversion of other somatic cell types remains unknown. Here, we uncover that miR-9/9-124 induces neuronal conversion of multiple cell types: dura fibroblasts, astrocytes, smooth muscle cells, and pericytes.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
The glucagon-like peptide-1 receptor (GLP-1R) plays an important role in regulating insulin secretion and reducing body weight, making it a prominent target in the treatment of type 2 diabetes and obesity. Extensive research on GLP-1R signaling has provided insights into the connection between receptor function and physiological outcomes, such as the correlation between Gs signaling and insulin secretion, yet the exact mechanisms regulating signaling remain unclear. Here, we explore the internalization pathway of GLP-1R, which is crucial for controlling insulin release and maintaining pancreatic beta-cell function.
View Article and Find Full Text PDFFEBS J
January 2025
Université d'Angers, Inserm, CNRS, CRCI2NA, ICO, Angers, France.
Senescence is a tumor suppressor mechanism triggered by oncogene expression and chemotherapy treatment. It orchestrates a definitive cessation of cell proliferation through the activation of the p53-p21 and p16-Rb pathways, coupled with the compaction of proliferative genes within heterochromatin regions. Some cancer cells have the ability to elude this proliferative arrest but the signaling pathways involved in circumventing senescence remain to be characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!