Small registers of spin qubits in silicon can exhibit hour-long coherence times and exceeded error-correction thresholds. However, their connection to larger quantum processors is an outstanding challenge. To this end, spin qubits with optical interfaces offer key advantages: they can minimize the heat load and give access to modular quantum computing architectures that eliminate cross-talk and offer a large connectivity. Here, we implement such an efficient spin-photon interface based on erbium dopants in a nanophotonic resonator. We demonstrate optical single-shot readout of a spin in silicon whose coherence exceeds the Purcell-enhanced optical lifetime, paving the way for entangling remote spins via photon interference. As erbium dopants can emit coherent photons in the minimal-loss band of optical fibers, and tens of such qubits can be spectrally multiplexed in each resonator, the demonstrated hardware platform offers unique promise for distributed quantum information processing based on scalable, integrated silicon devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-024-55552-9 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695859 | PMC |
Phys Rev Lett
December 2024
Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA.
We present a scalable protocol for measuring full counting statistics (FCS) in experiments or tensor-network simulations. In this method, an ancilla in the middle of the system acts as a turnstile, with its phase keeping track of the time-integrated particle flux. Unlike quantum gas microscopy, the turnstile protocol faithfully captures FCS starting from number-indefinite initial states or in the presence of noisy dynamics.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Korea.
Addressing and mitigating decoherence sources plays an essential role in the development of a scalable quantum computing system, which requires low gate errors to be consistently maintained throughout the circuit execution. While nuclear spin-free materials, such as isotopically purified silicon, exhibit intrinsically promising coherence properties for electron spin qubits, the omnipresent charge noise, when converted to magnetic noise under a strong magnetic field gradient, often hinders stable qubit operation within a time frame comparable to the data acquisition time. Here, we demonstrate both open- and closed-loop suppression techniques for the transduced noise in silicon spin qubits, resulting in a more than two-fold (ten-fold) improvement of the inhomogeneous coherence time (Rabi oscillation quality) that leads to a single-qubit gate fidelity of over 99.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.
Landau-Zener tunneling, which describes the transition in a two-level system during a sweep through an anti-crossing, is a model applicable to a wide range of physical phenomena. Realistic quantum systems are affected by dissipation due to coupling to their environments. An important aspect of understanding such open quantum systems is the relative energy scales of the system itself and the system-environment coupling, which distinguishes the weak- and strong-coupling regimes.
View Article and Find Full Text PDFNat Commun
January 2025
TUM School of Natural Sciences, Department of Physics and Munich Center for Quantum Science and Technology (MCQST), Technical University of Munich, James-Franck-Str. 1, Garching, Germany.
Small registers of spin qubits in silicon can exhibit hour-long coherence times and exceeded error-correction thresholds. However, their connection to larger quantum processors is an outstanding challenge. To this end, spin qubits with optical interfaces offer key advantages: they can minimize the heat load and give access to modular quantum computing architectures that eliminate cross-talk and offer a large connectivity.
View Article and Find Full Text PDFNat Commun
December 2024
School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Quantum computers now encounter the significant challenge of scalability, similar to the issue that classical computing faced previously. Recent results in high-fidelity spin qubits manufactured with a Si CMOS technology, along with demonstrations that cryogenic CMOS-based control/readout electronics can be integrated into the same chip or die, opens up an opportunity to break out the challenges of qubit size, I/O, and integrability. However, the power consumption of cryogenic CMOS-based control/readout electronics cannot support thousands or millions of qubits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!