Improved silicon solar cells by tuning angular response to solar trajectory.

Nat Commun

School of Photovoltaic and Renewable Energy Engineering (SPREE), University of New South Wales, Sydney, 2052, Australia.

Published: January 2025

Silicon solar cell costs are reducing dramatically with these cells now providing the majority of new electricity generation capacity worldwide. Cost reduction has been via economies of scale and steadily increasing sunlight energy conversion efficiency. The best experimental cells at 27.4% efficiency approach the 29.4% figure almost universally regarded as the limit on silicon cell performance. Here we show that assumptions in deducing this limit are too restrictive, since failing to incorporate sunlight directionality. Furthermore, we show how this directionality and the cell's angular response can be quantified compatibly, using projections of angular dependencies of both onto the solar module plane. Even simple schemes for exploiting directionality, including installing solar modules facing the equator at near-latitude tilt, increase theoretical limiting efficiency above 29.4%. Highest gains are for cells designed for sunlight tracking systems, including common 1-axis trackers, with such cells having theoretical efficiency limits > 30%. In this work, we provide a strategy for ongoing improvements in commercial cell efficiency over this decade, additionally lowering cost via reduced cell thickness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697001PMC
http://dx.doi.org/10.1038/s41467-024-55681-1DOI Listing

Publication Analysis

Top Keywords

silicon solar
8
angular response
8
solar
5
cells
5
efficiency
5
improved silicon
4
solar cells
4
cells tuning
4
tuning angular
4
response solar
4

Similar Publications

This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.

View Article and Find Full Text PDF

Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.

View Article and Find Full Text PDF

Perovskite/silicon tandem solar cells (TSCs) are promising candidates for commercialization due to their outstanding power conversion efficiencies (PCEs). However, controlling the crystallization process and alleviating the phases/composition inhomogeneity represent a considerable challenge for perovskite layers grown on rough silicon substrates, ultimately limiting the efficiency and stability of TSC. Here, this study reports a "halide locking" strategy that simultaneously modulates the nucleation and crystal growth process of wide bandgap perovskites by introducing a multifunctional ammonium salt, thioacetylacetamide hydrochloride (TAACl), to bind with all types of cations and anions in the mixed halide perovskite precursor.

View Article and Find Full Text PDF

Improved silicon solar cells by tuning angular response to solar trajectory.

Nat Commun

January 2025

School of Photovoltaic and Renewable Energy Engineering (SPREE), University of New South Wales, Sydney, 2052, Australia.

Silicon solar cell costs are reducing dramatically with these cells now providing the majority of new electricity generation capacity worldwide. Cost reduction has been via economies of scale and steadily increasing sunlight energy conversion efficiency. The best experimental cells at 27.

View Article and Find Full Text PDF

Light People: Prof. Henry Snaith's (FRS) perovskite optoelectronics journey.

Light Sci Appl

January 2025

Executive Management College of CHN ENERGY, No.7 Binhe Avenue, North District of Future Science City, Changping District, Beijing, 102211, China.

In 2012, Prof. Henry Snaith demonstrated the first solid-state perovskite solar cell (PSC) with an efficiency of 10.9%, igniting a surge of interest and research into perovskite materials for their potential to revolutionize the photovoltaic (PV) industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!