Machine learning offers a promising avenue for expediting the discovery of new compounds by accurately predicting their thermodynamic stability. This approach provides significant advantages in terms of time and resource efficiency compared to traditional experimental and modeling methods. However, most existing models are constructed based on specific domain knowledge, potentially introducing biases that impact their performance. Here, we propose a machine learning framework rooted in electron configuration, further enhanced through stack generalization with two additional models grounded in diverse domain knowledge. Experimental results validate the efficacy of our model in accurately predicting the stability of compounds, achieving an Area Under the Curve score of 0.988. Notably, our model demonstrates exceptional efficiency in sample utilization, requiring only one-seventh of the data used by existing models to achieve the same performance. To underscore the versatility of our approach, we present three illustrative examples showcasing its effectiveness in navigating unexplored composition space. We present two case studies to demonstrate that our method can facilitate the exploration of new two-dimensional wide bandgap semiconductors and double perovskite oxides. Validation results from first-principles calculations indicate that our method demonstrates remarkable accuracy in correctly identifying stable compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55525-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696921PMC

Publication Analysis

Top Keywords

machine learning
12
predicting thermodynamic
8
thermodynamic stability
8
electron configuration
8
accurately predicting
8
existing models
8
domain knowledge
8
stability inorganic
4
compounds
4
inorganic compounds
4

Similar Publications

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.

View Article and Find Full Text PDF

Machine learning assisted classification RASAR modeling for the nephrotoxicity potential of a curated set of orally active drugs.

Sci Rep

January 2025

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.

We have adopted the classification Read-Across Structure-Activity Relationship (c-RASAR) approach in the present study for machine-learning (ML)-based model development from a recently reported curated dataset of nephrotoxicity potential of orally active drugs. We initially developed ML models using nine different algorithms separately on topological descriptors (referred to as simply "descriptors" in the subsequent sections of the manuscript) and MACCS fingerprints (referred to as "fingerprints" in the subsequent sections of the manuscript), thus generating 18 different ML QSAR models. Using the chemical spaces defined by the modeling descriptors and fingerprints, the similarity and error-based RASAR descriptors were computed, and the most discriminating RASAR descriptors were used to develop another set of 18 different ML c-RASAR models.

View Article and Find Full Text PDF

Machine learning techniques for non-destructive estimation of plum fruit weight.

Sci Rep

January 2025

Crop and Horticultural Science Research Department, Mazandaran Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tajrish, Iran.

Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!