Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrical resistivity in good metals, particularly noble metals such as gold (Au), silver (Ag), or copper, increases linearly with temperature (T) for T > Θ, where Θ is the Debye temperature. This is because the coupling (λ) between the electrons and the lattice vibrations, or phonons, in these metals is weak, with λ ~ 0.1-0.2. In this work, we outline a nanostructuring strategy of crystalline Au where this concept of metallic transport breaks down. We show that by embedding a distributed network of ultra-small Ag nanoparticles (AgNPs) of radius ~ 1-2 nm inside a crystalline Au shell, the electron-phonon interaction can be enhanced, with an effective λ as high as ≈ 20. With increasing AgNP density, the electrical resistivity deviates from T-linearity and approaches a saturation to the Mott-Ioffe-Regel scale ρ ~ ha/e for both disorder (T → 0) and phonon (T ≫ Θ)-dependent components of resistivity (here, a = 0.3 nm, is the lattice constant of Au).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696232 | PMC |
http://dx.doi.org/10.1038/s41467-024-55435-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!