A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-modal conditional diffusion model using signed distance functions for metal-organic frameworks generation. | LitMetric

Multi-modal conditional diffusion model using signed distance functions for metal-organic frameworks generation.

Nat Commun

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

Published: January 2025

The design of porous materials with user-desired properties has been a great interest for the last few decades. However, the flexibility of target properties has been highly limited, and targeting multiple properties of diverse modalities simultaneously has been scarcely explored. Furthermore, although deep generative models have opened a new paradigm in materials generation, their incorporation into porous materials such as metal-organic frameworks (MOFs) has not been satisfactory due to their structural complexity. In this work, we introduce MOFFUSION, a latent diffusion model that addresses the aforementioned challenges. Signed distance functions (SDFs) are employed for the input representation of MOFs, marking their first usage in representing porous materials for generative models. Using the suitability of SDFs in describing complicated pore structures, MOFFUSION exhibits exceptional generation performance, and demonstrates its versatile capability of conditional generation with handling diverse modalities of data, including numeric, categorical, text data, and their combinations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696190PMC
http://dx.doi.org/10.1038/s41467-024-55390-9DOI Listing

Publication Analysis

Top Keywords

porous materials
12
diffusion model
8
signed distance
8
distance functions
8
metal-organic frameworks
8
diverse modalities
8
generative models
8
multi-modal conditional
4
conditional diffusion
4
model signed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!