A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

VTA projections to M1 are essential for reorganization of layer 2-3 network dynamics underlying motor learning. | LitMetric

AI Article Synopsis

  • The primary motor cortex (M1) is essential for learning motor skills, and dopaminergic signaling from the ventral-tegmental area (VTA) plays a significant role in this process.
  • Using techniques like calcium imaging and chemogenetic inhibition, researchers found that learning a dexterity task leads to a reorganization of M1 layer 2-3, changing how neurons connect and communicate while maintaining overall activity levels.
  • Blocking VTA signals during learning halted these neural changes, highlighting the importance of dopaminergic input in developing outcome signaling and refined connectivity in M1, which is crucial for acquiring new motor skills.

Article Abstract

The primary motor cortex (M1) is crucial for motor skill learning. Previous studies demonstrated that skill acquisition requires dopaminergic VTA (ventral-tegmental area) signaling in M1, however little is known regarding the effect of these inputs at the neuronal and network levels. Using dexterity task, calcium imaging, chemogenetic inhibiting, and geometric data analysis, we demonstrate VTA-dependent reorganization of M1 layer 2-3 during motor learning. While average activity and average functional connectivity of layer 2-3 network remain stable during learning, activity kinetics, correlational configuration of functional connectivity, and average connectivity strength of layer 2-3 neurons gradually transform towards an expert configuration. Additionally, sensory tone representation gradually shifts to success-failure outcome signaling. Inhibiting VTA dopaminergic inputs to M1 during learning, prevents all these changes. Our findings demonstrate dopaminergic VTA-dependent formation of outcome signaling and new connectivity configuration of the layer 2-3 network, supporting reorganization of the M1 network for storing new motor skills.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696230PMC
http://dx.doi.org/10.1038/s41467-024-55317-4DOI Listing

Publication Analysis

Top Keywords

layer 2-3
20
2-3 network
12
reorganization layer
8
motor learning
8
functional connectivity
8
outcome signaling
8
layer
5
2-3
5
network
5
motor
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!