A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Bayesian active learning platform for scalable combination drug screens. | LitMetric

Large-scale combination drug screens are generally considered intractable due to the immense number of possible combinations. Existing approaches use ad hoc fixed experimental designs then train machine learning models to impute unobserved combinations. Here we propose BATCHIE, an orthogonal approach that conducts experiments dynamically in batches. BATCHIE uses information theory and probabilistic modeling to design each batch to be maximally informative based on the results of previous experiments. On retrospective experiments from previous large-scale screens, BATCHIE designs rapidly discover highly effective and synergistic combinations. In a prospective combination screen of a library of 206 drugs on a collection of pediatric cancer cell lines, the BATCHIE model accurately predicts unseen combinations and detects synergies after exploring only 4% of the 1.4M possible experiments. Further, the model identifies a panel of top combinations for Ewing sarcomas, which follow-up validation experiments confirm to be effective, including the rational and translatable top hit of PARP plus topoisomerase I inhibition. These results demonstrate that adaptive experiments can enable large-scale unbiased combination drug screens with a relatively small number of experiments. BATCHIE is open source and publicly available ( https://github.com/tansey-lab/batchie ).

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55287-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696745PMC

Publication Analysis

Top Keywords

combination drug
12
drug screens
12
experiments
7
combinations
5
batchie
5
bayesian active
4
active learning
4
learning platform
4
platform scalable
4
combination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!