Ultra robust negative differential resistance memristor for hardware neuron circuit implementation.

Nat Commun

Key Laboratory of Brain like Neuromorphic Devices and Systems of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding, Hebei, China.

Published: January 2025

Neuromorphic computing holds immense promise for developing highly efficient computational approaches. Memristor-based artificial neurons, known for due to their straightforward structure, high energy efficiency, and superior scalability, which enable them to successfully mimic biological neurons with electrical devices. However, the reliability of memristors has always been a major obstacle in neuromorphic computing. Here, we propose an ultra-robust and efficient neuron of negative differential resistance (NDR) memristor based on AlAs/InGaAs/AlAs quantum well (QW) structure, which has super stable performance such as low variation (0.264%), high temperature resistance (400 °C) and high endurance. The NDR devices can cycle more than 10 switching cycles at room temperature and more than 10 switching cycles even at a high temperature of 400 °C, which means that the device can operate for more than 310 years at 10 Hz update frequency. Furthermore, the NDR memristor implements the integration feature of the neuronal membrane and avoids using external capacitors, and successfully apply it to the self-designed super reduced neuron circuit. Moreover, we have successfully constructed Fitz Hugh Nagumo (FN) neuron circuit, reduced hardware costs of FN neuron circuit and enabling diverse neuron dynamics and nine neuron functions. Meanwhile, based on the high temperature stability of the device, a voltage-temperature fused multimodal impulse neural network was constructed to achieve 91.74% accuracy in classifying digital images with different temperature labels. This work offers a novel approach to build FN neuron circuits using NDR memristors, and provides a more competitive method to build a highly reliable neuromorphic hardware system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696043PMC
http://dx.doi.org/10.1038/s41467-024-55293-9DOI Listing

Publication Analysis

Top Keywords

neuron circuit
16
high temperature
12
negative differential
8
differential resistance
8
neuron
8
neuromorphic computing
8
ndr memristor
8
switching cycles
8
high
5
temperature
5

Similar Publications

Microglia-resident immune cells in the central nervous system-undergo morphological and functional changes in response to signals from the local environment and mature into various homeostatic states. However, niche signals underlying microglial differentiation and maturation remain unknown. Here, we show that neuronal micronuclei (MN) transfer to microglia, which is followed by changing microglial characteristics during the postnatal period.

View Article and Find Full Text PDF

Interoception broadly refers to awareness of one's internal milieu. Although the importance of the body-to-brain communication that underlies interoception is implicit, the vagal afferent signalling and corresponding brain circuits that shape perception of the viscera are not entirely clear. Here, we use mice to parse neural circuits subserving interoception of the heart and gut.

View Article and Find Full Text PDF

Neocortical somatostatin neuron diversity in cognition and learning.

Trends Neurosci

January 2025

Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA. Electronic address:

Somatostatin-expressing (SST) neurons are a major class of electrophysiologically and morphologically distinct inhibitory cells in the mammalian neocortex. Transcriptomic data suggest that this class can be divided into multiple subtypes that are correlated with morpho-electric properties. At the same time, availability of transgenic tools to identify and record from SST neurons in awake, behaving mice has stimulated insights about their response properties and computational function.

View Article and Find Full Text PDF

Genetic information is involved in the gradual emergence of cortical areas since the neural tube begins to form, shaping the heterogeneous functions of neural circuits in the human brain. Informed by invasive tract-tracing measurements, the cortex exhibits marked interareal variation in connectivity profiles, revealing the heterogeneity across cortical areas. However, it remains unclear about the organizing principles possibly shared by genetics and cortical wiring to manifest the spatial heterogeneity across cortex.

View Article and Find Full Text PDF

Corticocortical (CC) projections in the visual system facilitate hierarchical processing of sensory information. In addition to direct CC connections, indirect cortico-thalamo-cortical (CTC) pathways through the pulvinar nucleus of the thalamus can relay sensory signals and mediate cortical interactions according to behavioral demands. While the pulvinar connects extensively to the entire visual cortex, it is unknown whether transthalamic pathways link all cortical areas or whether they follow systematic organizational rules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!