AI Article Synopsis

  • Pseudomonas aeruginosa, when losing DNA mismatch repair (MMR), becomes a hypermutator, leading to high rates of multidrug resistance (MDR), especially after exposure to antibiotics.
  • Hypermutated MMR-deficient P. aeruginosa has a specific mutational signature and quickly develops MDR through shared resistance mechanisms across different drug classes.
  • Analyzing mutational signatures of P. aeruginosa in patients shows many MMR-deficient strains are already MDR or likely to become resistant, indicating that this analysis could be a valuable diagnostic tool for predicting and managing MDR in clinical settings.

Article Abstract

Bacteria of clinical importance, such as Pseudomonas aeruginosa, can become hypermutators upon loss of DNA mismatch repair (MMR) and are clinically correlated with high rates of multidrug resistance (MDR). Here, we demonstrate that hypermutated MMR-deficient P. aeruginosa has a unique mutational signature and rapidly acquires MDR upon repeated exposure to first-line or last-resort antibiotics. MDR acquisition was irrespective of drug class and instead arose through common resistance mechanisms shared between the initial and secondary drugs. Rational combinations of drugs having distinct resistance mechanisms prevented MDR acquisition in hypermutated MMR-deficient P. aeruginosa. Mutational signature analysis of P. aeruginosa across different human disease contexts identified appreciable quantities of MMR-deficient clinical isolates that were already MDR or prone to future MDR acquisition. Mutational signature analysis of patient samples is a promising diagnostic tool that may predict MDR and guide precision-based medical care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695600PMC
http://dx.doi.org/10.1038/s41467-024-55206-wDOI Listing

Publication Analysis

Top Keywords

mutational signature
16
signature analysis
12
mdr acquisition
12
multidrug resistance
8
hypermutated mmr-deficient
8
mmr-deficient aeruginosa
8
resistance mechanisms
8
mdr
7
mutational
4
analysis predicts
4

Similar Publications

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Correlating Disordered Activation Domain Ensembles with Gene Expression Levels.

Biophys Rep (N Y)

January 2025

Department of Chemistry and Biochemistry, University of California Merced, Merced, 95343; Department of Chemistry, Syracuse University, Syracuse, 13244.

Transcription factor proteins bind to specific DNA promoter sequences and initiate gene transcription. These proteins often contain intrinsically disordered activation domains (ADs) that regulate their transcriptional activity. Like other disordered protein regions, ADs do not have a fixed three-dimensional structure and instead exist in an ensemble of conformations.

View Article and Find Full Text PDF
Article Synopsis
  • HCN ion channels play a key role in cellular activity and pain perception, with propofol acting as an analgesic by inhibiting their function.
  • Researchers used a propofol analog to pinpoint binding sites on the human HCN1 isoform, revealing a specific pocket formed by certain residues in the channel.
  • Mutations in this binding pocket affect propofol's ability to modulate HCN1 currents, highlighting its specific binding mechanism and offering insights for developing targeted HCN channel modulators.
View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Weill Cornell Medicine, New York, NY, USA.

Background: The strongest genetic risk factors for AD include the e4 allele of APOE and the R47H point mutation in the TREM2 receptor. TREM2 is required for the induction of a disease-associated microglia (DAM) signature and microglial neurodegenerative phenotype (MGnD) in response to disease pathology, signatures which both include APOE upregulation. There is currently limited information regarding how the TREM2-APOE pathway ultimately contributes to AD risk, and downstream mechanisms of this pathway are unknown.

View Article and Find Full Text PDF

BRAF mutations in colorectal cancer (CRC) comprise three functional classes: Class 1 (V600E) with strong constitutive activation, Class 2 with pathogenic kinase activity lower than Class 1, and Class 3 which paradoxically lacks kinase activity. Non-Class 1 mutations associate with better prognosis, microsatellite stability, distal tumour location and better anti-EGFR response. Analysis of 13 CRC cohorts (n=6,605 tumours) compared Class 1 (n=709, 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!