A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unusual violation of the Wiedemann-Franz law at ultralow temperatures in topological compensated semimetals. | LitMetric

Unusual violation of the Wiedemann-Franz law at ultralow temperatures in topological compensated semimetals.

Nat Commun

Anhui Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China.

Published: January 2025

Thermal conductivity and electrical resistivity at ultralow temperatures and high magnetic fields are studied in the topological compensated semimetals TaAs, NbAs, and NdSb. A striking phenomenon is observed where the thermal conductivity shows a T scaling at very low temperatures, while the resistivity shows a T-independent residual term. This indicates a strong violation of the Wiedemann-Franz (WF) law, since the field dependence of κ shows that the low-temperature thermal conductivity is dominated by electronic transport. The obtained Lorenz ratio is hundreds of times lower than Sommerfeld's value even when approaching the zero-temperature limit. The strong downward deviation of the WF law at very low temperatures point to a non-Fermi liquid state in these materials. In addition, the giant thermal quantum oscillations accompanied by antiphase characteristics have been observed. Our findings not only point to a possible non-Fermi liquid ground state of these topological compensated semimetals, but also reveal an unusual T temperature dependence for the electronic thermal conductivity.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55141-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697415PMC

Publication Analysis

Top Keywords

thermal conductivity
16
topological compensated
12
compensated semimetals
12
violation wiedemann-franz
8
wiedemann-franz law
8
ultralow temperatures
8
low temperatures
8
point non-fermi
8
non-fermi liquid
8
thermal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!