Unconventional superconductivity, where electron pairing does not involve electron-phonon interactions, is often attributed to magnetic correlations in a material. Well known examples include high-T cuprates and uranium-based heavy fermion superconductors. Less explored are unconventional superconductors with strong spin-orbit coupling, where interactions between spin-polarised electrons and external magnetic field can result in multiple superconducting phases and field-induced transitions between them, a rare phenomenon in the superconducting state. Here we report a magnetic-field driven phase transition in β-PdBi, a layered non-magnetic superconductor. Our tunnelling spectroscopy on thin PdBi monocrystals incorporated in planar superconductor-insulator-normal metal junctions reveals a marked discontinuity in the superconducting properties with increasing in-plane field, which is consistent with a transition from conventional (s-wave) to nodal pairing. Our theoretical analysis suggests that this phase transition may arise from spin polarisation and spin-momentum locking caused by locally broken inversion symmetry, with p-wave pairing becoming energetically favourable in high fields. Our findings also reconcile earlier predictions of unconventional multigap superconductivity in β-PdBi with previous experiments where only a single s-wave gap could be detected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696495 | PMC |
http://dx.doi.org/10.1038/s41467-024-54867-x | DOI Listing |
J Food Sci
January 2025
Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.
Freezing extends the shelf life of foods but often leads to structural damage due to ice crystal formation, negatively impacting quality attributes. Oscillating magnetic field (OMF)-assisted supercooling has emerged as a potential technique to overcome these limitations by inhibiting ice nucleation and maintaining foods in a supercooled state. Despite its potential, the effectiveness and underlying mechanisms of OMF-assisted supercooling remain subjects of debate.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
NIT Rourkela: National Institute of Technology Rourkela, Department of Chemistry, NIT Rourkela, 769008, Rourkela, INDIA.
Certain proteins and synthetic covalent polymers experience aqueous phase transitions, driving functional self-assembly. Herein, we unveil the ability of supramolecular polymers (SPs) formed by G4.Cu+ to undergo heating-induced unexpected aqueous phase transitions.
View Article and Find Full Text PDFPhys Rev Res
January 2020
Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA.
We use Nielsen's geometric approach to quantify the circuit complexity in a one-dimensional Kitaev chain across a topological phase transition. We find that the circuit complexities of both the ground states and nonequilibrium steady states of the Kitaev model exhibit nonanalytical behaviors at the critical points, and thus can be used to detect both and topological phase transitions. Moreover, we show that the locality property of the real-space optimal Hamiltonian connecting two different ground states depends crucially on whether the two states belong to the same or different phases.
View Article and Find Full Text PDFJ Mater Chem A Mater
January 2025
MESA+ Institute for Nanotechnology, University of Twente 7500 AE Enschede Netherlands
The advancement of rapid-response grid energy storage systems and the widespread adoption of electric vehicles are significantly hindered by the charging times and energy densities associated with current lithium-ion battery technology. In state-of-the-art lithium-ion batteries, graphite is employed as the standard negative electrode material. However, graphite suffers from polarization and deteriorating side-reactions at the high currents needed for fast charging.
View Article and Find Full Text PDFInt J Nurs Sci
September 2024
School of Nursing, Yasuda Women's University, Hiroshima, Japan.
Objectives: Newly graduated nurses commence night shifts during a phase of heightened vulnerability to reality shock, exacerbating the challenges faced by these graduates. Therefore, this study aimed to identify the challenges experienced by newly graduated nurses when undertaking night shifts in order to help identify a strategy for supporting their adaptation to these shifts.
Methods: Semi-structured personal interviews were used to collect data.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!