Eye loss occurs convergently in numerous animal phyla as an adaptation to dark environments. We investigate the cave planarian Girardia multidiverticulata (Gm), a representative species of the Spiralian clade, to study mechanisms of eye loss. We found that Gm, which was previously described as an eyeless species, retains rudimentary and functional eyes. Eyes are maintained in homeostasis and regenerated in adult planarians by stem cells, called neoblasts, through their fate specification to eye progenitors. The reduced number of eye cells in cave planarians is associated with a decreased rate of stem cell fate specification to eye progenitors during homeostasis and regeneration. Conversely, the homeostatic formation of new cells from stem cell-derived progenitors for other tissues, including for neurons, pharynx, and epidermis, is comparable between cave and surface species. These findings reveal a mode of evolutionary trait loss, with change in rate of fate specification in adult stem cells leading to tissue size reduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-024-54478-6 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696554 | PMC |
J Environ Manage
January 2025
Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA.
Per- and poly-fluoroalkyl substances (PFAS) have emerged as a silent menace, infiltrating groundwater systems worldwide. Many countries, preoccupied with tackling legacy pollutants, have inadvertently neglected the emerging threat of PFAS. This review provides an exhaustive analysis beyond the current state of knowledge and sustainable pathways vis-a-vis addressing PFAS in groundwater systems globally.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Homi Bhabha National Institute, Mumbai, Maharashtra, India.
Background: Recent advances in understanding the regulatory networks implicated in Alzheimer's Disease (AD) evinces the involvement of long non-coding RNAs (lncRNAs) as crucial regulatory players. The present study explores the role played by maternally imprinted lncRNA XIST in regulating the sex-biased prevalence of AD.
Method: With whole transcriptomic sequencing data from the hippocampal RNA of post-mortem AD brains from humans and APP/PS1 mice, the altered expression of XIST in AD was studied.
Genome Biol
January 2025
College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
Background: In humans and other mammals, the process of oogenesis initiates asynchronously in specific ovarian regions, leading to the localization of dormant and growing follicles in the cortex and medulla, respectively; however, the current understanding of this process remains insufficient.
Results: Here, we integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to comprehend spatial-temporal gene expression profiles and explore the spatial organization of ovarian microenvironments during early oogenesis in pigs. Projection of the germ cell clusters at different stages of oogenesis into the spatial atlas unveils a "cortical to medullary (C-M)" distribution of germ cells in the developing porcine ovaries.
Nat Commun
January 2025
Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
Ex vivo expansion of hematopoietic stem cells (HSC) requires the maintenance of a stemness state while cells are proliferating. This can be achieved via exposure to UM171 which leads to the degradation of chromatin modifiers and prevents the loss of key epigenetic marks. However, the chromatin landscape varies across populations within the hematopoietic system and the effect of UM171 on self-renewal and differentiation potential of different hematopoietic progenitor cells is less characterized.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
The placenta is the critical interface between mother and fetus, and consequently, placental dysfunction underlies many pregnancy complications. Placental formation requires an adequate expansion of trophoblast stem and progenitor cells followed by finely tuned lineage specification events. Here, using single-cell RNA sequencing of mouse trophoblast stem cells during the earliest phases of differentiation, we identify gatekeepers of the stem cell state, notably Nicol1, and uncover unsuspected trajectories of cell lineage diversification as well as regulators of lineage entry points.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!