Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity. As will be shown, induction of bone formation by subcutaneous BMP2 implants is severely compromised in Ddr2-deficient mice. In addition, Ddr2 deficiency attenuates HO in mice expressing the ACVR1 mutation associated with human fibrodysplasia ossificans progressiva. In cells migrating into BMP2 implants, DDR2 is co-expressed with GLI1, a skeletal stem cell marker, and DDR2/GLI1-positive cells participate in BMP2-induced bone formation where they contribute to chondrogenic and osteogenic lineages. Consistent with this distribution, conditional knockout of Ddr2 in Gli1-expressing cells inhibited bone formation to the same extent seen in globally Ddr2-deficient animals. This response was explained by selective inhibition of Gli1 cell proliferation without changes in apoptosis. The basis for this DDR2 requirement was explored further using bone marrow stromal cells. Although Ddr2 deficiency inhibited BMP2-dependent chondrocyte and osteoblast differentiation and in vivo, bone formation, early BMP responses including SMAD phosphorylation remained largely intact. Instead, Ddr2 deficiency reduced the nuclear/cytoplasmic ratio of the Hippo pathway intermediates, YAP and TAZ. This suggests that DDR2 regulates Hippo pathway-mediated responses to the collagen matrix, which subsequently affect BMP responsiveness. In summary, DDR2 is an important modulator of BMP signaling and a potential therapeutic target both for enhancing regeneration and treating HO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41413-024-00391-z | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696679 | PMC |
Sci Rep
January 2025
PKUCare Lu'an Hospital, 046204, Shanxi, China.
Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, 49000, Angers, France.
Obesity is a major public health issue worldwide. Despite various approaches to weight loss, the most effective technique for reducing obesity, as well as diabetes and associated diseases, is bariatric surgery. Increasingly, young women without children are undergoing bariatric surgery, vertical sleeve gastrectomy (VSG) being the most common procedure nowadays.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
Background: Low-intensity pulsed ultrasound (LIPUS) has been used as an effective noninvasive method for treating fractures and osteoarthrosis, but the application in the field of oral implantation is in its infancy. This study aimed to clarify the effect and mechanism of LIPUS on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and implant osseointegration, and to provide an experimental basis for future clinical applications.
Methods: Dental implants were inserted into Wistar rat femurs, and LIPUS was performed for 4 weeks.
Sci Total Environ
January 2025
Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China. Electronic address:
In the present study, we investigated the effects of a representative of the per- and polyfluoroalkyl substance (PFAS) chemical group, namely perfluorooctanoic acid (PFOA), and its alternatives (perfluorobutanoic acid [PFBA] and the hexafluoropropylene oxide dimer acid [GenX]) on bone homeostasis, a process that mainly depends on osteoblast (OB) and osteoclast (OC) activities at the cellular level. C3H10T1/2 cells and bone marrow macrophages (BMMs) were respectively induced into OBs and OCs, and treated with PFOA, PFBA, and GenX at doses of 0.25, 2.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil.
Bacterial nanocellulose (BNC) has attracted considerable attention in the field of biomedical engineering due to its potential for use in bone regeneration applications. The present study investigates the in vitro and in vivo efficacy of bacterial nanocellulose (BNC) combined with calcium and cerium ions (BNC-Ce:CaP) in bone regeneration applications. XRD analysis confirmed the presence of monetite and hydroxyapatite phases in BNC-CaP, while BNC-Ce:CaP revealed an additional brushite phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!